Cargando…
A hierarchical Bayesian approach for handling missing classification data
1. Ecologists use classifications of individuals in categories to understand composition of populations and communities. These categories might be defined by demographics, functional traits, or species. Assignment of categories is often imperfect, but frequently treated as observations without error...
Autores principales: | Ketz, Alison C., Johnson, Therese L., Hooten, Mevin B., Hobbs, N. Thompson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434567/ https://www.ncbi.nlm.nih.gov/pubmed/30962886 http://dx.doi.org/10.1002/ece3.4927 |
Ejemplares similares
-
An Accessible Method for Implementing Hierarchical Models with Spatio-Temporal Abundance Data
por: Ross, Beth E., et al.
Publicado: (2012) -
An Efficient and Effective Model to Handle Missing Data in Classification
por: Mehrabani-Zeinabad, Kamran, et al.
Publicado: (2020) -
Forecasting the Effects of Fertility Control on Overabundant Ungulates: White-Tailed Deer in the National Capital Region
por: Raiho, Ann M., et al.
Publicado: (2015) -
Approaches to handling missing or “problematic” pharmacology data: Pharmacokinetics
por: Irby, Donald J., et al.
Publicado: (2021) -
An integrated modeling approach to estimating Gunnison sage-grouse population dynamics: combining index and demographic data
por: Davis, Amy J, et al.
Publicado: (2014)