Cargando…
Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures
Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434978/ https://www.ncbi.nlm.nih.gov/pubmed/30996473 http://dx.doi.org/10.1007/s10955-018-2059-0 |
_version_ | 1783406575492268032 |
---|---|
author | Dettmann, Carl P. |
author_facet | Dettmann, Carl P. |
author_sort | Dettmann, Carl P. |
collection | PubMed |
description | Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes is Poisson distributed, and the probability of no isolated nodes is equal to the probability the whole graph is connected. Here we examine these properties for several self-similar node distributions, including smooth and fractal, uniform and nonuniform, and finitely ramified or otherwise. We show that nonuniformity can break the Poisson distribution property, but it strengthens the link between isolation and connectivity. It also stretches out the connectivity transition. Finite ramification is another mechanism for lack of connectivity. The same considerations apply to fractal distributions as smooth, with some technical differences in evaluation of the integrals and analytical arguments. |
format | Online Article Text |
id | pubmed-6434978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-64349782019-04-15 Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures Dettmann, Carl P. J Stat Phys Article Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes is Poisson distributed, and the probability of no isolated nodes is equal to the probability the whole graph is connected. Here we examine these properties for several self-similar node distributions, including smooth and fractal, uniform and nonuniform, and finitely ramified or otherwise. We show that nonuniformity can break the Poisson distribution property, but it strengthens the link between isolation and connectivity. It also stretches out the connectivity transition. Finite ramification is another mechanism for lack of connectivity. The same considerations apply to fractal distributions as smooth, with some technical differences in evaluation of the integrals and analytical arguments. Springer US 2018-05-16 2018 /pmc/articles/PMC6434978/ /pubmed/30996473 http://dx.doi.org/10.1007/s10955-018-2059-0 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Dettmann, Carl P. Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures |
title | Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures |
title_full | Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures |
title_fullStr | Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures |
title_full_unstemmed | Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures |
title_short | Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures |
title_sort | isolation and connectivity in random geometric graphs with self-similar intensity measures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434978/ https://www.ncbi.nlm.nih.gov/pubmed/30996473 http://dx.doi.org/10.1007/s10955-018-2059-0 |
work_keys_str_mv | AT dettmanncarlp isolationandconnectivityinrandomgeometricgraphswithselfsimilarintensitymeasures |