Cargando…
Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures
Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes...
Autor principal: | Dettmann, Carl P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434978/ https://www.ncbi.nlm.nih.gov/pubmed/30996473 http://dx.doi.org/10.1007/s10955-018-2059-0 |
Ejemplares similares
-
Random geometrically graph directed self-similar multifractals
por: Olsen, Lars, et al.
Publicado: (1994) -
Random geometric graphs
por: Penrose, Mathew
Publicado: (2003) -
Opinion Dynamics and Influencing on Random Geometric Graphs
por: Zhang, Weituo, et al.
Publicado: (2014) -
Joint large deviation result for empirical measures of the coloured random geometric graphs
por: Doku-Amponsah, Kwabena
Publicado: (2016) -
Connectivity of Random Geometric Hypergraphs
por: de Kergorlay, Henry-Louis, et al.
Publicado: (2023)