Cargando…
Improved iterative shrinkage-thresholding for sparse signal recovery via Laplace mixtures models
In this paper, we propose a new method for support detection and estimation of sparse and approximately sparse signals from compressed measurements. Using a double Laplace mixture model as the parametric representation of the signal coefficients, the problem is formulated as a weighted ℓ(1) minimiza...
Autores principales: | Ravazzi, Chiara, Magli, Enrico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434991/ https://www.ncbi.nlm.nih.gov/pubmed/30996728 http://dx.doi.org/10.1186/s13634-018-0565-5 |
Ejemplares similares
-
Sparsity estimation from compressive projections via sparse random matrices
por: Ravazzi, Chiara, et al.
Publicado: (2018) -
Robust Acoustic Imaging Based on Bregman Iteration and Fast Iterative Shrinkage-Thresholding Algorithm
por: Huang, Linsen, et al.
Publicado: (2020) -
Learned Block Iterative Shrinkage Thresholding Algorithm for Photothermal Super Resolution Imaging
por: Hauffen, Jan Christian, et al.
Publicado: (2022) -
Compressed sensing for distributed systems
por: Coluccia, Giulio, et al.
Publicado: (2015) -
Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography
por: Liu, Xuechao, et al.
Publicado: (2022)