Cargando…

Amenability of coarse spaces and [Formula: see text] -algebras

In this article we analyze the notions of amenability and paradoxical decomposition from an algebraic perspective. We consider this dichotomy for locally finite extended metric spaces and for general algebras over fields. In the context of algebras we also study the relation of amenability with prop...

Descripción completa

Detalles Bibliográficos
Autores principales: Ara, Pere, Li, Kang, Lledó, Fernando, Wu, Jianchao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434994/
https://www.ncbi.nlm.nih.gov/pubmed/30996722
http://dx.doi.org/10.1007/s13373-017-0109-6
Descripción
Sumario:In this article we analyze the notions of amenability and paradoxical decomposition from an algebraic perspective. We consider this dichotomy for locally finite extended metric spaces and for general algebras over fields. In the context of algebras we also study the relation of amenability with proper infiniteness. We apply our general analysis to two important classes of algebras: the unital Leavitt path algebras and the translation algebras on locally finite extended metric spaces. In particular, we show that the amenability of a metric space is equivalent to the algebraic amenability of the corresponding translation algebra.