Cargando…

What Are the Peripheral Blood Determinants for Increased Osteoclast Formation in the Various Inflammatory Diseases Associated With Bone Loss?

Local priming of osteoclast precursors (OCp) has long been considered the main and obvious pathway that takes place in the human body, where local bone lining cells and RANKL-expressing osteocytes may facilitate the differentiation of OCp. However, priming of OCp away from bone, such as in inflammat...

Descripción completa

Detalles Bibliográficos
Autores principales: de Vries, Teun J., el Bakkali, Ismail, Kamradt, Thomas, Schett, Georg, Jansen, Ineke D. C., D'Amelio, Patrizia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434996/
https://www.ncbi.nlm.nih.gov/pubmed/30941138
http://dx.doi.org/10.3389/fimmu.2019.00505
Descripción
Sumario:Local priming of osteoclast precursors (OCp) has long been considered the main and obvious pathway that takes place in the human body, where local bone lining cells and RANKL-expressing osteocytes may facilitate the differentiation of OCp. However, priming of OCp away from bone, such as in inflammatory tissues, as revealed in peripheral blood, may represent a second pathway, particularly relevant in individuals who suffer from systemic bone loss such as prevalent in inflammatory diseases. In this review, we used a systematic approach to review the literature on osteoclast formation in peripheral blood in patients with inflammatory diseases associated with bone loss. Only studies that compared inflammatory (bone) disease with healthy controls in the same study were included. Using this core collection, it becomes clear that experimental osteoclastogenesis using peripheral blood from patients with bone loss diseases in prevalent diseases such as rheumatoid arthritis, osteoporosis, periodontitis, and cancer-related osteopenia unequivocally point toward an intrinsically increased osteoclast formation and activation. In particular, such increased osteoclastogenesis already takes place without the addition of the classical osteoclastogenesis cytokines M-CSF and RANKL in vitro. We show that T-cells and monocytes as OCp are the minimal demands for such unstimulated osteoclast formation. In search for common and disease-specific denominators of the diseases with inflammation-driven bone loss, we demonstrate that altered T-cell activity and a different composition—such as the CD14+CD16+ vs. CD14+CD16– monocytes—and priming of OCp with increased M-CSF, RANKL, and TNF- α levels in peripheral blood play a role in increased osteoclast formation and activity. Future research will likely uncover the barcodes of the OCp in the various inflammatory diseases associated with bone loss.