Cargando…
Natural language processing and recurrent network models for identifying genomic mutation-associated cancer treatment change from patient progress notes
OBJECTIVES: Natural language processing (NLP) and machine learning approaches were used to build classifiers to identify genomic-related treatment changes in the free-text visit progress notes of cancer patients. METHODS: We obtained 5889 deidentified progress reports (2439 words on average) for 755...
Autores principales: | Guan, Meijian, Cho, Samuel, Petro, Robin, Zhang, Wei, Pasche, Boris, Topaloglu, Umit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435007/ https://www.ncbi.nlm.nih.gov/pubmed/30944913 http://dx.doi.org/10.1093/jamiaopen/ooy061 |
Ejemplares similares
-
A tale of three subspecialties: Diagnosis recording patterns are internally consistent but Specialty-Dependent
por: Diaz-Garelli, Jose-Franck, et al.
Publicado: (2019) -
Identifying primary and recurrent cancers using a SAS-based natural language processing algorithm
por: Strauss, Justin A, et al.
Publicado: (2013) -
Using natural language processing to identify the status of homelessness and housing instability among serious illness patients from clinical notes in an integrated healthcare system
por: Xie, Fagen, et al.
Publicado: (2023) -
Extraction of clinical phenotypes for Alzheimer’s disease dementia from clinical notes using natural language processing
por: Oh, Inez Y, et al.
Publicado: (2023) -
Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing
por: Xie, Kevin, et al.
Publicado: (2022)