Cargando…
When are static and adjustable robust optimization problems with constraint-wise uncertainty equivalent?
Adjustable robust optimization (ARO) generally produces better worst-case solutions than static robust optimization (RO). However, ARO is computationally more difficult than RO. In this paper, we provide conditions under which the worst-case objective values of ARO and RO problems are equal. We prov...
Autores principales: | Marandi, Ahmadreza, den Hertog, Dick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435025/ https://www.ncbi.nlm.nih.gov/pubmed/30996478 http://dx.doi.org/10.1007/s10107-017-1166-z |
Ejemplares similares
-
Cautious Label-Wise Ranking with Constraint Satisfaction
por: Carranza-Alarcon, Yonatan-Carlos, et al.
Publicado: (2020) -
Softening the Robustness of Optimization Problems: A New Budgeted Uncertainty Approach
por: Guillaume, Romain, et al.
Publicado: (2020) -
Probabilistic strain optimization under constraint uncertainty
por: Yousofshahi, Mona, et al.
Publicado: (2013) -
Normative uncertainties in public health foresight
por: Den Hertog, F, et al.
Publicado: (2022) -
When to use bit-wise neutrality
por: Friedrich, Tobias, et al.
Publicado: (2008)