Cargando…
Non-invasive assessment of NAFLD as systemic disease—A machine learning perspective
BACKGROUND & AIMS: Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed...
Autores principales: | Canbay, Ali, Kälsch, Julia, Neumann, Ursula, Rau, Monika, Hohenester, Simon, Baba, Hideo A., Rust, Christian, Geier, Andreas, Heider, Dominik, Sowa, Jan-Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435145/ https://www.ncbi.nlm.nih.gov/pubmed/30913263 http://dx.doi.org/10.1371/journal.pone.0214436 |
Ejemplares similares
-
Compensation of feature selection biases accompanied with improved predictive performance for binary classification by using a novel ensemble feature selection approach
por: Neumann, Ursula, et al.
Publicado: (2016) -
Novel Algorithm for Non-Invasive Assessment of Fibrosis in NAFLD
por: Sowa, Jan-Peter, et al.
Publicado: (2013) -
Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction
por: Baars, Theodor, et al.
Publicado: (2018) -
Characterization of two types of intranuclear hepatocellular inclusions in NAFLD
por: Schwertheim, Suzan, et al.
Publicado: (2020) -
Evaluation of Biomarkers of NAFLD in a Cohort of Morbidly Obese Patients
por: Kälsch, Julia, et al.
Publicado: (2011)