Cargando…
Quasi-periodic two-scale homogenisation and effective spatial dispersion in high-contrast media
The convergence of spectra via two-scale convergence for double-porosity models is well known. A crucial assumption in these works is that the stiff component of the body forms a connected set. We show that under a relaxation of this assumption the (periodic) two-scale limit of the operator is insuf...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435209/ https://www.ncbi.nlm.nih.gov/pubmed/30996526 http://dx.doi.org/10.1007/s00526-018-1365-3 |
Sumario: | The convergence of spectra via two-scale convergence for double-porosity models is well known. A crucial assumption in these works is that the stiff component of the body forms a connected set. We show that under a relaxation of this assumption the (periodic) two-scale limit of the operator is insufficient to capture the full asymptotic spectral properties of high-contrast periodic media. Asymptotically, waves of all periods (or quasi-momenta) are shown to persist and an appropriate extension of the notion of two-scale convergence is introduced. As a result, homogenised limit equations with none trivial quasi-momentum dependence are found as resolvent limits of the original operator family. This results in asymptotic spectral behaviour with a rich dependence on quasimomenta. |
---|