Cargando…
Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization
In this paper we study optimization problems related to bipartite quantum correlations using techniques from tracial noncommutative polynomial optimization. First we consider the problem of finding the minimal entanglement dimension of such correlations. We construct a hierarchy of semidefinite prog...
Autores principales: | Gribling, Sander, de Laat, David, Laurent, Monique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435212/ https://www.ncbi.nlm.nih.gov/pubmed/30996477 http://dx.doi.org/10.1007/s10107-018-1287-z |
Ejemplares similares
-
Entanglement bounds on the performance of quantum computing architectures
por: Eldredge, Zachary, et al.
Publicado: (2020) -
Graph polynomials
por: Shi, Yongtang, et al.
Publicado: (2016) -
Optimal control of quantum state preparation and entanglement creation in two-qubit quantum system with bounded amplitude
por: Li, Xikun
Publicado: (2023) -
Quantum groups and noncommutative geometry
por: Manin, Yuri I
Publicado: (2018) -
Noncommutative mathematics for quantum systems
por: Franz, Uwe, et al.
Publicado: (2016)