Cargando…
SVD-aided non-orthogonal decomposition (SANOD) method to exploit prior knowledge of spectral components in the analysis of time-resolved data
Analysis of time-resolved data typically involves discriminating noise against the signal and extracting time-independent components and their time-dependent contributions. Singular value decomposition (SVD) serves this purpose well, but the extracted time-independent components are not necessarily...
Autores principales: | Ki, H., Lee, Y., Choi, E. H., Lee, S., Ihee, H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Crystallographic Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435371/ https://www.ncbi.nlm.nih.gov/pubmed/30931347 http://dx.doi.org/10.1063/1.5085864 |
Ejemplares similares
-
SVD-aided pseudo principal-component analysis: A new method to speed up and improve determination of the optimum kinetic model from time-resolved data
por: Oang, Key Young, et al.
Publicado: (2017) -
SVD-CNN: A Convolutional Neural Network Model with Orthogonal Constraints Based on SVD for Context-Aware Citation Recommendation
por: Tao, Shaoyu, et al.
Publicado: (2020) -
Projection to extract the perpendicular component (PEPC) method for extracting kinetics from time-resolved data
por: Ki, H., et al.
Publicado: (2023) -
Orthogonal decompositions and integral lattices
por: Kostrikin, Alexei I, et al.
Publicado: (2011) -
Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD)
por: Bermúdez Ordoñez, Juan Carlos, et al.
Publicado: (2018)