Cargando…
Long non-coding RNA PVT1 indicates a poor prognosis of glioma and promotes cell proliferation and invasion via target EZH2
Human glioma is one of the malignant tumors of the central nervous system (CNS). Its prognosis is poor, which is due to its genetic heterogeneity and our poor understanding of its underlying molecular mechanisms. The present study aimed to assess the relationship between plasmacytoma variant translo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435466/ https://www.ncbi.nlm.nih.gov/pubmed/29046366 http://dx.doi.org/10.1042/BSR20170871 |
Sumario: | Human glioma is one of the malignant tumors of the central nervous system (CNS). Its prognosis is poor, which is due to its genetic heterogeneity and our poor understanding of its underlying molecular mechanisms. The present study aimed to assess the relationship between plasmacytoma variant translocation 1 (PVT1) and enhancer of zeste homolog 2 (EZH2), and their effects on the proliferation and invasion of glioma cells. The expression levels of PVT1 and EZH2 in human glioma tissues and cell lines were measured using quantitative RT-PCR (qRT-PCR). Then, after siRNA-PVT1 and entire PVT1 sequence vector transfection, we determined the regulation roles of PVT1 in the proliferation, apoptosis, migration, and invasion of glioma cells. We found that the expression levels of both PVT1 and EZH2 were up-regulated in human glioma tissues and cell lines, and positively correlated with glioma malignancy. And, silencing of PVT1 expression resulted in decreased proliferation, increased apoptosis, and decreased migration and invasion. In addition, exogenous PVT1 led to increased EZH2 expression and increased proliferation and induced proliferation and invasion. These data inferred that long non-coding RNA PVT1 could be served as an indicator of glioma prognosis, and PVT1–EZH2 regulatory pathway may be a novel therapeutic target for treating glioma. |
---|