Cargando…
A Fully Automated System Using A Convolutional Neural Network to Predict Renal Allograft Rejection: Extra-validation with Giga-pixel Immunostained Slides
Pathologic diagnoses mainly depend on visual scoring by pathologists, a process that can be time-consuming, laborious, and susceptible to inter- and/or intra-observer variations. This study proposes a novel method to enhance pathologic scoring of renal allograft rejection. A fully automated system u...
Autores principales: | Kim, Young-Gon, Choi, Gyuheon, Go, Heounjeong, Cho, Yongwon, Lee, Hyunna, Lee, A-Reum, Park, Beomhee, Kim, Namkug |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435691/ https://www.ncbi.nlm.nih.gov/pubmed/30914690 http://dx.doi.org/10.1038/s41598-019-41479-5 |
Ejemplares similares
-
Therapies for Chronic Allograft Rejection
por: Kim, Min Young, et al.
Publicado: (2021) -
Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms
por: Woo, Ilsang, et al.
Publicado: (2019) -
A Curriculum Learning Strategy to Enhance the Accuracy of Classification of Various Lesions in Chest-PA X-ray Screening for Pulmonary Abnormalities
por: Park, Beomhee, et al.
Publicado: (2019) -
Reproducibility of abnormality detection on chest radiographs using convolutional neural network in paired radiographs obtained within a short-term interval
por: Cho, Yongwon, et al.
Publicado: (2020) -
GigaTracker, a Thin and Fast Silicon Pixels Tracker
por: Velghe, Bob, et al.
Publicado: (2014)