Cargando…

Analysis of fluoroquinolones in dusts from intensive livestock farming and the co-occurrence of fluoroquinolone-resistant Escherichia coli

Fluoroquinolones are important therapeutics in human and veterinary medicine. This study aimed to retrospectively analyse sedimentation dusts from intensive-livestock-farming barns for fluoroquinolones and investigate the association between resistant Escherichia coli and the detected drugs. Sedimen...

Descripción completa

Detalles Bibliográficos
Autores principales: Schulz, Jochen, Kemper, Nicole, Hartung, Joerg, Janusch, Franziska, Mohring, Siegrun A. I., Hamscher, Gerd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435704/
https://www.ncbi.nlm.nih.gov/pubmed/30914675
http://dx.doi.org/10.1038/s41598-019-41528-z
Descripción
Sumario:Fluoroquinolones are important therapeutics in human and veterinary medicine. This study aimed to retrospectively analyse sedimentation dusts from intensive-livestock-farming barns for fluoroquinolones and investigate the association between resistant Escherichia coli and the detected drugs. Sedimentation-dust samples (n = 125) collected (1980–2009) at 14 barns of unknown-treatment status were analysed by HPLC and tandem-mass spectroscopy to detect enrofloxacin, ciprofloxacin, marbofloxacin, and difloxacin. Recent microbiological data were included to investigate the relationship between fluoroquinolone presence and fluoroquinolone-resistant E. coli. Fifty-nine dust samples (47%) from seven barns contained fluoroquinolone residues. Up to three different fluoroquinolones were detected in pig and broiler barns. Fluoroquinolone concentrations ranged from 10-pg/mg to 46-ng/mg dust. Fluoroquinolone-resistant E. coli were isolated from four barns. Of all the dust samples, 22% contained non-susceptible isolates. Non-susceptible isolate presence in the dust was significantly associated (p = 0.0283) with detecting the drugs, while drug detection increased the odds (4-fold) of finding non-susceptible E. coli (odds ratio = 3.9877, 95% CI: 1.2854–12.3712). This retrospective study shows that fluoroquinolone usage leads to dust contamination. We conclude that farmers and animals inhale/swallow fluoroquinolones and fluoroquinolone-resistant bacteria due to drug application. Furthermore, uncontrolled drug emissions via air exhausted from the barns can be assumed.