Cargando…
Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy
Developing robust and high-efficient synthesis approaches has significant importance for the expanded applications of upconversion nanoparticles (UCNPs). Here, we report a high-throughput synthesis strategy to fabricate water-dispersible core-shell structured UCNPs. Firstly, we successfully obtain m...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435707/ https://www.ncbi.nlm.nih.gov/pubmed/30914696 http://dx.doi.org/10.1038/s41598-019-41482-w |
Sumario: | Developing robust and high-efficient synthesis approaches has significant importance for the expanded applications of upconversion nanoparticles (UCNPs). Here, we report a high-throughput synthesis strategy to fabricate water-dispersible core-shell structured UCNPs. Firstly, we successfully obtain more than 10 grams core UCNPs with high quality from one-pot reaction using liquid rare-earth precursors. Afterwards, different core-shell structured UCNPs are fabricated by successive layer-by-layer strategy to get enhanced fluorescence property. Finally, the hydrophobic UCNPs are modified with poly(ethylene glycol) monooleate (PEG-OA) though a novel physical grinding method. On the basis of mass-production, we use the as-prepared PEG-UCNPs to construct an 808-nm stimuli photodynamic therapy agent, and apply them in cancer therapy and bio-imaging. |
---|