Cargando…
Sociodemographic Indicators of Health Status Using a Machine Learning Approach and Data from the English Longitudinal Study of Aging (ELSA)
BACKGROUND: Studies on the effects of sociodemographic factors on health in aging now include the use of statistical models and machine learning. The aim of this study was to evaluate the determinants of health in aging using machine learning methods and to compare the accuracy with traditional meth...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436225/ https://www.ncbi.nlm.nih.gov/pubmed/30879019 http://dx.doi.org/10.12659/MSM.913283 |
_version_ | 1783406773132066816 |
---|---|
author | Engchuan, Worrawat Dimopoulos, Alexandros C. Tyrovolas, Stefanos Caballero, Francisco Félix Sanchez-Niubo, Albert Arndt, Holger Ayuso-Mateos, Jose Luis Haro, Josep Maria Chatterji, Somnath Panagiotakos, Demosthenes B. |
author_facet | Engchuan, Worrawat Dimopoulos, Alexandros C. Tyrovolas, Stefanos Caballero, Francisco Félix Sanchez-Niubo, Albert Arndt, Holger Ayuso-Mateos, Jose Luis Haro, Josep Maria Chatterji, Somnath Panagiotakos, Demosthenes B. |
author_sort | Engchuan, Worrawat |
collection | PubMed |
description | BACKGROUND: Studies on the effects of sociodemographic factors on health in aging now include the use of statistical models and machine learning. The aim of this study was to evaluate the determinants of health in aging using machine learning methods and to compare the accuracy with traditional methods. MATERIAL/METHODS: The health status of 6,209 adults, age <65 years (n=1,585), 65–79 years (n=3,267), and >80 years (n=1,357) were measured using an established health metric (0–100) that incorporated physical function and activities of daily living (ADL). Data from the English Longitudinal Study of Ageing (ELSA) included socio-economic and sociodemographic characteristics and history of falls. Health-trend and personal-fitted variables were generated as predictors of health metrics using three machine learning methods, random forest (RF), deep learning (DL) and the linear model (LM), with calculation of the percentage increase in mean square error (%IncMSE) as a measure of the importance of a given predictive variable, when the variable was removed from the model. RESULTS: Health-trend, physical activity, and personal-fitted variables were the main predictors of health, with the%incMSE of 85.76%, 63.40%, and 46.71%, respectively. Age, employment status, alcohol consumption, and household income had the%incMSE of 20.40%, 20.10%, 16.94%, and 13.61%, respectively. Performance of the RF method was similar to the traditional LM (p=0.7), but RF significantly outperformed DL (p=0.006). CONCLUSIONS: Machine learning methods can be used to evaluate multidimensional longitudinal health data and may provide accurate results with fewer requirements when compared with traditional statistical modeling. |
format | Online Article Text |
id | pubmed-6436225 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | International Scientific Literature, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64362252019-04-17 Sociodemographic Indicators of Health Status Using a Machine Learning Approach and Data from the English Longitudinal Study of Aging (ELSA) Engchuan, Worrawat Dimopoulos, Alexandros C. Tyrovolas, Stefanos Caballero, Francisco Félix Sanchez-Niubo, Albert Arndt, Holger Ayuso-Mateos, Jose Luis Haro, Josep Maria Chatterji, Somnath Panagiotakos, Demosthenes B. Med Sci Monit Clinical Research BACKGROUND: Studies on the effects of sociodemographic factors on health in aging now include the use of statistical models and machine learning. The aim of this study was to evaluate the determinants of health in aging using machine learning methods and to compare the accuracy with traditional methods. MATERIAL/METHODS: The health status of 6,209 adults, age <65 years (n=1,585), 65–79 years (n=3,267), and >80 years (n=1,357) were measured using an established health metric (0–100) that incorporated physical function and activities of daily living (ADL). Data from the English Longitudinal Study of Ageing (ELSA) included socio-economic and sociodemographic characteristics and history of falls. Health-trend and personal-fitted variables were generated as predictors of health metrics using three machine learning methods, random forest (RF), deep learning (DL) and the linear model (LM), with calculation of the percentage increase in mean square error (%IncMSE) as a measure of the importance of a given predictive variable, when the variable was removed from the model. RESULTS: Health-trend, physical activity, and personal-fitted variables were the main predictors of health, with the%incMSE of 85.76%, 63.40%, and 46.71%, respectively. Age, employment status, alcohol consumption, and household income had the%incMSE of 20.40%, 20.10%, 16.94%, and 13.61%, respectively. Performance of the RF method was similar to the traditional LM (p=0.7), but RF significantly outperformed DL (p=0.006). CONCLUSIONS: Machine learning methods can be used to evaluate multidimensional longitudinal health data and may provide accurate results with fewer requirements when compared with traditional statistical modeling. International Scientific Literature, Inc. 2019-03-17 /pmc/articles/PMC6436225/ /pubmed/30879019 http://dx.doi.org/10.12659/MSM.913283 Text en © Med Sci Monit, 2019 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Clinical Research Engchuan, Worrawat Dimopoulos, Alexandros C. Tyrovolas, Stefanos Caballero, Francisco Félix Sanchez-Niubo, Albert Arndt, Holger Ayuso-Mateos, Jose Luis Haro, Josep Maria Chatterji, Somnath Panagiotakos, Demosthenes B. Sociodemographic Indicators of Health Status Using a Machine Learning Approach and Data from the English Longitudinal Study of Aging (ELSA) |
title | Sociodemographic Indicators of Health Status Using a Machine Learning Approach and Data from the English Longitudinal Study of Aging (ELSA) |
title_full | Sociodemographic Indicators of Health Status Using a Machine Learning Approach and Data from the English Longitudinal Study of Aging (ELSA) |
title_fullStr | Sociodemographic Indicators of Health Status Using a Machine Learning Approach and Data from the English Longitudinal Study of Aging (ELSA) |
title_full_unstemmed | Sociodemographic Indicators of Health Status Using a Machine Learning Approach and Data from the English Longitudinal Study of Aging (ELSA) |
title_short | Sociodemographic Indicators of Health Status Using a Machine Learning Approach and Data from the English Longitudinal Study of Aging (ELSA) |
title_sort | sociodemographic indicators of health status using a machine learning approach and data from the english longitudinal study of aging (elsa) |
topic | Clinical Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436225/ https://www.ncbi.nlm.nih.gov/pubmed/30879019 http://dx.doi.org/10.12659/MSM.913283 |
work_keys_str_mv | AT engchuanworrawat sociodemographicindicatorsofhealthstatususingamachinelearningapproachanddatafromtheenglishlongitudinalstudyofagingelsa AT dimopoulosalexandrosc sociodemographicindicatorsofhealthstatususingamachinelearningapproachanddatafromtheenglishlongitudinalstudyofagingelsa AT tyrovolasstefanos sociodemographicindicatorsofhealthstatususingamachinelearningapproachanddatafromtheenglishlongitudinalstudyofagingelsa AT caballerofranciscofelix sociodemographicindicatorsofhealthstatususingamachinelearningapproachanddatafromtheenglishlongitudinalstudyofagingelsa AT sanchezniuboalbert sociodemographicindicatorsofhealthstatususingamachinelearningapproachanddatafromtheenglishlongitudinalstudyofagingelsa AT arndtholger sociodemographicindicatorsofhealthstatususingamachinelearningapproachanddatafromtheenglishlongitudinalstudyofagingelsa AT ayusomateosjoseluis sociodemographicindicatorsofhealthstatususingamachinelearningapproachanddatafromtheenglishlongitudinalstudyofagingelsa AT harojosepmaria sociodemographicindicatorsofhealthstatususingamachinelearningapproachanddatafromtheenglishlongitudinalstudyofagingelsa AT chatterjisomnath sociodemographicindicatorsofhealthstatususingamachinelearningapproachanddatafromtheenglishlongitudinalstudyofagingelsa AT panagiotakosdemosthenesb sociodemographicindicatorsofhealthstatususingamachinelearningapproachanddatafromtheenglishlongitudinalstudyofagingelsa |