Cargando…
Sociodemographic Indicators of Health Status Using a Machine Learning Approach and Data from the English Longitudinal Study of Aging (ELSA)
BACKGROUND: Studies on the effects of sociodemographic factors on health in aging now include the use of statistical models and machine learning. The aim of this study was to evaluate the determinants of health in aging using machine learning methods and to compare the accuracy with traditional meth...
Autores principales: | Engchuan, Worrawat, Dimopoulos, Alexandros C., Tyrovolas, Stefanos, Caballero, Francisco Félix, Sanchez-Niubo, Albert, Arndt, Holger, Ayuso-Mateos, Jose Luis, Haro, Josep Maria, Chatterji, Somnath, Panagiotakos, Demosthenes B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436225/ https://www.ncbi.nlm.nih.gov/pubmed/30879019 http://dx.doi.org/10.12659/MSM.913283 |
Ejemplares similares
-
Advanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: the ATHLOS project
por: Félix Caballero, Francisco, et al.
Publicado: (2017) -
Social determinants, health status and 10-year mortality among 10,906 older adults from the English longitudinal study of aging: the ATHLOS project
por: Kollia, Natasa, et al.
Publicado: (2018) -
Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk
por: Dimopoulos, Alexandros C., et al.
Publicado: (2018) -
Determinants of Processing Speed Trajectories among Middle Aged or Older Adults, and Their Association with Chronic Illnesses: The English Longitudinal Study of Aging
por: Gkotzamanis, Viktor, et al.
Publicado: (2021) -
Pain rates in general population for the period 1991–2015 and 10-years prediction: results from a multi-continent age-period-cohort analysis
por: Guido, Davide, et al.
Publicado: (2020)