Cargando…

Bacterial communities in natural versus pesticide‐treated Aphis gossypii populations in North China

The cotton‐melon aphid, Aphis gossypii Glover, is a worldwide‐spreading species, and pesticide‐resistant populations are increasing rapidly. In this study, investigations were performed based on Illumina HiSeq sequencing of the 16S rDNA V4 region for the bacterial communities embodied as intracellul...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shuai, Luo, Junyu, Wang, Li, Zhang, Lijuan, Zhu, Xiangzhen, Jiang, Weili, Cui, Jinjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436440/
https://www.ncbi.nlm.nih.gov/pubmed/29877631
http://dx.doi.org/10.1002/mbo3.652
Descripción
Sumario:The cotton‐melon aphid, Aphis gossypii Glover, is a worldwide‐spreading species, and pesticide‐resistant populations are increasing rapidly. In this study, investigations were performed based on Illumina HiSeq sequencing of the 16S rDNA V4 region for the bacterial communities embodied as intracellular symbionts under natural and in pesticide‐treated populations of A. gossypii. The results revealed that more than 82% of bacterial communities belonged to the phylum Proteobacteria in which the maximum proportion (53.24%) was of the genus Arsenophonus; Hamiltonella composed 22.31; and 1.37% was of the genus Acinetobacter. The relative abundance of Hamiltonella was obvious, vertically transmitted, divided into two groups, and its infection influenced the bacterial communities in A. gossypii. Symbiont density and composition were changed in samples tested on different days. Azadirachtin and phoxim influenced on the composition of bacterial communities. Different biomarkers were used for pesticide‐treated samples with LEfSe results. These findings will increase awareness regarding bacterial communities in naturally occurring populations of A. gossypii and pave the way to study the relationship between symbionts and pesticide resistance.