Cargando…
A Mobile-Based Deep Learning Model for Cassava Disease Diagnosis
Convolutional neural network (CNN) models have the potential to improve plant disease phenotyping where the standard approach is visual diagnostics requiring specialized training. In scenarios where a CNN is deployed on mobile devices, models are presented with new challenges due to lighting and ori...
Autores principales: | Ramcharan, Amanda, McCloskey, Peter, Baranowski, Kelsee, Mbilinyi, Neema, Mrisho, Latifa, Ndalahwa, Mathias, Legg, James, Hughes, David P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436463/ https://www.ncbi.nlm.nih.gov/pubmed/30949185 http://dx.doi.org/10.3389/fpls.2019.00272 |
Ejemplares similares
-
Accuracy of a Smartphone-Based Object Detection Model, PlantVillage Nuru, in Identifying the Foliar Symptoms of the Viral Diseases of Cassava–CMD and CBSD
por: Mrisho, Latifa M., et al.
Publicado: (2020) -
Deep Learning for Image-Based Cassava Disease Detection
por: Ramcharan, Amanda, et al.
Publicado: (2017) -
Community phytosanitation to manage cassava brown streak disease
por: Legg, James, et al.
Publicado: (2017) -
Developing broad-spectrum resistance in cassava against viruses causing the cassava mosaic and the cassava brown streak diseases
por: Sheat, Samar, et al.
Publicado: (2023) -
The Cassava NBS-LRR Genes Confer Resistance to Cassava Bacterial Blight
por: Zhang, He, et al.
Publicado: (2022)