Cargando…

Dynamic membrane proteome of adipogenic and myogenic precursors in skeletal muscle highlights EPHA2 may promote myogenic differentiation through ERK signaling

The balance of myogenic and adipogenic differentiation is crucial for skeletal muscle homeostasis. Given the vital role of membrane proteins (MBPs) in cell signal perception, membrane proteomics was conducted to delineate mechanisms regulating differentiation of adipogenic and myogenic precursors in...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xin, Wang, Liqi, Qiu, Kai, Xu, Doudou, Yin, Jingdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Federation of American Societies for Experimental Biology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436648/
https://www.ncbi.nlm.nih.gov/pubmed/30668921
http://dx.doi.org/10.1096/fj.201801907R
Descripción
Sumario:The balance of myogenic and adipogenic differentiation is crucial for skeletal muscle homeostasis. Given the vital role of membrane proteins (MBPs) in cell signal perception, membrane proteomics was conducted to delineate mechanisms regulating differentiation of adipogenic and myogenic precursors in skeletal muscle. Adipogenic and myogenic precursors with divergent differentiation potential were isolated from the longissimus dorsi muscle of neonatal pigs by the preplate method. A total of 85 differentially expressed MBPs (P < 0.05 and fold change ≥1.2 or ≤0.83) between 2 precursors were detected via isobaric tags for relative and absolute quantitation (iTRAQ) assay, including 67 up-regulated and 18 down-regulated in myogenic precursors. Functional enrichment analysis uncovered that myogenic and adipogenic precursors showed significant differences in cytoskeleton organization, syncytium formation, environmental information processing, and organismal systems. Furthermore, key MBPs in regulating cell differentiation were also characterized, including ITGB3, ITGAV, ITPR3, and EPHA2. Noteworthily, EPHA2 was required for myogenic differentiation, and it may promote myogenic differentiation through ERK signaling. Collectively, our study provided an insight into the distinct MBP profile between myogenic and adipogenic precursors in skeletal muscle and served as a solid basis for supporting the role of MBPs in regulating differentiation.—Zhang, X., Wang, L., Qiu, K., Xu, D., Yin, J. Dynamic membrane proteome of adipogenic and myogenic precursors in skeletal muscle highlights EPHA2 may promote myogenic differentiation through ERK signaling.