Cargando…
Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches
BACKGROUND: Prognostic modelling using standard methods is well-established, particularly for predicting risk of single diseases. Machine-learning may offer potential to explore outcomes of even greater complexity, such as premature death. This study aimed to develop novel prediction algorithms usin...
Autores principales: | Weng, Stephen F., Vaz, Luis, Qureshi, Nadeem, Kai, Joe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436798/ https://www.ncbi.nlm.nih.gov/pubmed/30917171 http://dx.doi.org/10.1371/journal.pone.0214365 |
Ejemplares similares
-
Association of spontaneous abortion with all cause and cause specific premature mortality: prospective cohort study
por: Wang, Yi-Xin, et al.
Publicado: (2021) -
Adverse childhood experiences and premature all-cause mortality
por: Kelly-Irving, Michelle, et al.
Publicado: (2013) -
Variations in all-cause mortality, premature mortality and cause-specific mortality among persons with diabetes in Ontario, Canada
por: Rosella, Laura C, et al.
Publicado: (2023) -
Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care
por: Akyea, Ralph K., et al.
Publicado: (2020) -
Early identification of familial hypercholesterolaemia in general practice using patient-specific reminders: focus group with General Practitioners
por: Tranter, Jennifer, et al.
Publicado: (2014)