Cargando…
Learning protein constitutive motifs from sequence data
Statistical analysis of evolutionary-related protein sequences provides information about their structure, function, and history. We show that Restricted Boltzmann Machines (RBM), designed to learn complex high-dimensional data and their statistical features, can efficiently model protein families f...
Autores principales: | Tubiana, Jérôme, Cocco, Simona, Monasson, Rémi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436896/ https://www.ncbi.nlm.nih.gov/pubmed/30857591 http://dx.doi.org/10.7554/eLife.39397 |
Ejemplares similares
-
A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
por: Bravi, Barbara, et al.
Publicado: (2023) -
Adaptation of olfactory receptor abundances for efficient coding
por: Teşileanu, Tiberiu, et al.
Publicado: (2019) -
RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-Specific Prediction of Antigen Presentation by HLA-I Alleles
por: Bravi, Barbara, et al.
Publicado: (2021) -
Infer global, predict local: Quantity-relevance trade-off in protein fitness predictions from sequence data
por: Posani, Lorenzo, et al.
Publicado: (2023) -
Adaptive cluster algorithm to infer Boltzmann machines from multi-electrode recording data
por: Cocco, Simona, et al.
Publicado: (2011)