Cargando…
Machine learning‐based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics
AIMS: Machine learning (ML) is widely believed to be able to learn complex hidden interactions from the data and has the potential in predicting events such as heart failure (HF) readmission and death. Recent studies have revealed conflicting results likely due to failure to take into account the cl...
Autores principales: | Awan, Saqib Ejaz, Bennamoun, Mohammed, Sohel, Ferdous, Sanfilippo, Frank Mario, Dwivedi, Girish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437443/ https://www.ncbi.nlm.nih.gov/pubmed/30810291 http://dx.doi.org/10.1002/ehf2.12419 |
Ejemplares similares
-
Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death
por: Awan, Saqib E., et al.
Publicado: (2019) -
Machine learning risk prediction model for acute coronary syndrome and death from use of non-steroidal anti-inflammatory drugs in administrative data
por: Lu, Juan, et al.
Publicado: (2021) -
Choosing the right molecular machine learning potential
por: Pinheiro, Max, et al.
Publicado: (2021) -
Choose the right treatment for the right patients
por: Sheu, Shwu-Jiuan
Publicado: (2015) -
Neutrophils choose the right direction
por: LeBrasseur, Nicole
Publicado: (2002)