Cargando…
Transcriptional and physiological roles for STAT proteins in leptin action
OBJECTIVES: Leptin acts via its receptor LepRb on specialized neurons in the brain to modulate food intake, energy expenditure, and body weight. LepRb activates signal transducers and activators of transcription (STATs, including STAT1, STAT3, and STAT5) to control gene expression. METHODS: Because...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437596/ https://www.ncbi.nlm.nih.gov/pubmed/30718218 http://dx.doi.org/10.1016/j.molmet.2019.01.007 |
_version_ | 1783406960908959744 |
---|---|
author | Pan, Warren Allison, Margaret B. Sabatini, Paul Rupp, Alan Adams, Jessica Patterson, Christa Jones, Justin C. Olson, David P. Myers, Martin G. |
author_facet | Pan, Warren Allison, Margaret B. Sabatini, Paul Rupp, Alan Adams, Jessica Patterson, Christa Jones, Justin C. Olson, David P. Myers, Martin G. |
author_sort | Pan, Warren |
collection | PubMed |
description | OBJECTIVES: Leptin acts via its receptor LepRb on specialized neurons in the brain to modulate food intake, energy expenditure, and body weight. LepRb activates signal transducers and activators of transcription (STATs, including STAT1, STAT3, and STAT5) to control gene expression. METHODS: Because STAT3 is crucial for physiologic leptin action, we used TRAP-seq to examine gene expression in LepRb neurons of mice ablated for Stat3 in LepRb neurons (Stat3(LepRb)KO mice), revealing the STAT3-dependent transcriptional targets of leptin. To understand roles for STAT proteins in leptin action, we also ablated STAT1 or STAT5 from LepRb neurons and expressed a constitutively-active STAT3 (CASTAT3) in LepRb neurons. RESULTS: While we also found increased Stat1 expression and STAT1-mediated transcription of leptin-regulated genes in Stat3(LepRb)KO mice, ablating Stat1 in LepRb neurons failed to alter energy balance (even on the Stat3(LepRb)KO background); ablating Stat5 in LepRb neurons also failed to alter energy balance. Importantly, expression of a constitutively-active STAT3 (CASTAT3) in LepRb neurons decreased food intake and body weight and improved metabolic parameters in leptin-deficient (ob/ob) mice, as well as in wild-type animals. CONCLUSIONS: Thus, STAT3 represents the unique STAT protein required for leptin action and STAT3 suffices to mediate important components of leptin action in the absence of other LepRb signals. |
format | Online Article Text |
id | pubmed-6437596 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-64375962019-04-11 Transcriptional and physiological roles for STAT proteins in leptin action Pan, Warren Allison, Margaret B. Sabatini, Paul Rupp, Alan Adams, Jessica Patterson, Christa Jones, Justin C. Olson, David P. Myers, Martin G. Mol Metab Original Article OBJECTIVES: Leptin acts via its receptor LepRb on specialized neurons in the brain to modulate food intake, energy expenditure, and body weight. LepRb activates signal transducers and activators of transcription (STATs, including STAT1, STAT3, and STAT5) to control gene expression. METHODS: Because STAT3 is crucial for physiologic leptin action, we used TRAP-seq to examine gene expression in LepRb neurons of mice ablated for Stat3 in LepRb neurons (Stat3(LepRb)KO mice), revealing the STAT3-dependent transcriptional targets of leptin. To understand roles for STAT proteins in leptin action, we also ablated STAT1 or STAT5 from LepRb neurons and expressed a constitutively-active STAT3 (CASTAT3) in LepRb neurons. RESULTS: While we also found increased Stat1 expression and STAT1-mediated transcription of leptin-regulated genes in Stat3(LepRb)KO mice, ablating Stat1 in LepRb neurons failed to alter energy balance (even on the Stat3(LepRb)KO background); ablating Stat5 in LepRb neurons also failed to alter energy balance. Importantly, expression of a constitutively-active STAT3 (CASTAT3) in LepRb neurons decreased food intake and body weight and improved metabolic parameters in leptin-deficient (ob/ob) mice, as well as in wild-type animals. CONCLUSIONS: Thus, STAT3 represents the unique STAT protein required for leptin action and STAT3 suffices to mediate important components of leptin action in the absence of other LepRb signals. Elsevier 2019-01-24 /pmc/articles/PMC6437596/ /pubmed/30718218 http://dx.doi.org/10.1016/j.molmet.2019.01.007 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Pan, Warren Allison, Margaret B. Sabatini, Paul Rupp, Alan Adams, Jessica Patterson, Christa Jones, Justin C. Olson, David P. Myers, Martin G. Transcriptional and physiological roles for STAT proteins in leptin action |
title | Transcriptional and physiological roles for STAT proteins in leptin action |
title_full | Transcriptional and physiological roles for STAT proteins in leptin action |
title_fullStr | Transcriptional and physiological roles for STAT proteins in leptin action |
title_full_unstemmed | Transcriptional and physiological roles for STAT proteins in leptin action |
title_short | Transcriptional and physiological roles for STAT proteins in leptin action |
title_sort | transcriptional and physiological roles for stat proteins in leptin action |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437596/ https://www.ncbi.nlm.nih.gov/pubmed/30718218 http://dx.doi.org/10.1016/j.molmet.2019.01.007 |
work_keys_str_mv | AT panwarren transcriptionalandphysiologicalrolesforstatproteinsinleptinaction AT allisonmargaretb transcriptionalandphysiologicalrolesforstatproteinsinleptinaction AT sabatinipaul transcriptionalandphysiologicalrolesforstatproteinsinleptinaction AT ruppalan transcriptionalandphysiologicalrolesforstatproteinsinleptinaction AT adamsjessica transcriptionalandphysiologicalrolesforstatproteinsinleptinaction AT pattersonchrista transcriptionalandphysiologicalrolesforstatproteinsinleptinaction AT jonesjustinc transcriptionalandphysiologicalrolesforstatproteinsinleptinaction AT olsondavidp transcriptionalandphysiologicalrolesforstatproteinsinleptinaction AT myersmarting transcriptionalandphysiologicalrolesforstatproteinsinleptinaction |