Cargando…
Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning
Epidermal growth factor receptor (EGFR) genotyping is critical for treatment guidelines such as the use of tyrosine kinase inhibitors in lung adenocarcinoma. Conventional identification of EGFR genotype requires biopsy and sequence testing which is invasive and may suffer from the difficulty of acce...
Autores principales: | Wang, Shuo, Shi, Jingyun, Ye, Zhaoxiang, Dong, Di, Yu, Dongdong, Zhou, Mu, Liu, Ying, Gevaert, Olivier, Wang, Kun, Zhu, Yongbei, Zhou, Hongyu, Liu, Zhenyu, Tian, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Respiratory Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437603/ https://www.ncbi.nlm.nih.gov/pubmed/30635290 http://dx.doi.org/10.1183/13993003.00986-2018 |
Ejemplares similares
-
CT texture analysis of lung adenocarcinoma: can Radiomic features be surrogate biomarkers for EGFR mutation statuses
por: Mei, Dongdong, et al.
Publicado: (2018) -
Toward automatic prediction of EGFR mutation status in pulmonary adenocarcinoma with 3D deep learning
por: Zhao, Wei, et al.
Publicado: (2019) -
EGFR unusual mutation status in lung adenocarcinomas
por: Alarcão, Ana, et al.
Publicado: (2010) -
Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation
por: Wang, Shuo, et al.
Publicado: (2017) -
Correlation between EGFR mutation status and F(18)‐fluorodeoxyglucose positron emission tomography‐computed tomography image features in lung adenocarcinoma
por: Zhu, Lei, et al.
Publicado: (2019)