Cargando…
Drug Discovery Maps, a Machine Learning Model That Visualizes and Predicts Kinome–Inhibitor Interaction Landscapes
[Image: see text] The interpretation of high-dimensional structure–activity data sets in drug discovery to predict ligand–protein interaction landscapes is a challenging task. Here we present Drug Discovery Maps (DDM), a machine learning model that maps the activity profile of compounds across an en...
Autores principales: | Janssen, Antonius P. A., Grimm, Sebastian H., Wijdeven, Ruud H. M., Lenselink, Eelke B., Neefjes, Jacques, van Boeckel, Constant A. A., van Westen, Gerard J. P., van der Stelt, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437696/ https://www.ncbi.nlm.nih.gov/pubmed/30372617 http://dx.doi.org/10.1021/acs.jcim.8b00640 |
Ejemplares similares
-
Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway
por: Wijdeven, Ruud H., et al.
Publicado: (2016) -
Proteochemometric modeling in a Bayesian framework
por: Cortes-Ciriano, Isidro, et al.
Publicado: (2014) -
Applications of proteochemometrics - from species extrapolation to cell line sensitivity modelling
por: Cortes-Ciriano, Isidro, et al.
Publicado: (2015) -
Large-Scale Modeling
of Sparse Protein Kinase Activity
Data
por: Luukkonen, Sohvi, et al.
Publicado: (2023) -
Structure Kinetics
Relationships and Molecular Dynamics
Show Crucial Role for Heterocycle Leaving Group in Irreversible Diacylglycerol
Lipase Inhibitors
por: Janssen, Antonius P.A., et al.
Publicado: (2019)