Cargando…
A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space
This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The mole...
Autor principal: | Jensen, Jan H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438151/ https://www.ncbi.nlm.nih.gov/pubmed/30996948 http://dx.doi.org/10.1039/c8sc05372c |
Ejemplares similares
-
Towards efficient discovery of green synthetic pathways with Monte Carlo tree search and reinforcement learning
por: Wang, Xiaoxue, et al.
Publicado: (2020) -
A self-learning Monte Carlo tree search algorithm for robot path planning
por: Li, Wei, et al.
Publicado: (2023) -
Monte Carlo Tree Search-Based Recursive Algorithm for Feature Selection in High-Dimensional Datasets
por: Chaudhry, Muhammad Umar, et al.
Publicado: (2020) -
RNA inverse folding using Monte Carlo tree search
por: Yang, Xiufeng, et al.
Publicado: (2017) -
Retrosynthetic planning with experience-guided Monte Carlo tree search
por: Hong, Siqi, et al.
Publicado: (2023)