Cargando…
ITLNI identified by comprehensive bioinformatic analysis as a hub candidate biological target in human epithelial ovarian cancer
BACKGROUND: Epithelial ovarian cancer (EOC) is a female malignant tumor. Bioinformatics has been widely utilized to analyze genes related to cancer progression. Targeted therapy for specific biological factors has become more valuable. MATERIALS AND METHODS: Gene expression profiles of GSE18520 and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438265/ https://www.ncbi.nlm.nih.gov/pubmed/30988639 http://dx.doi.org/10.2147/CMAR.S189784 |
_version_ | 1783407075777314816 |
---|---|
author | Liu, JinHui Li, SiYue Liang, JunYa Jiang, Yi Wan, YiCong Zhou, ShuLin Cheng, WenJun |
author_facet | Liu, JinHui Li, SiYue Liang, JunYa Jiang, Yi Wan, YiCong Zhou, ShuLin Cheng, WenJun |
author_sort | Liu, JinHui |
collection | PubMed |
description | BACKGROUND: Epithelial ovarian cancer (EOC) is a female malignant tumor. Bioinformatics has been widely utilized to analyze genes related to cancer progression. Targeted therapy for specific biological factors has become more valuable. MATERIALS AND METHODS: Gene expression profiles of GSE18520 and GSE27651 were downloaded from Gene Expression Omnibus. We used the “limma” package to screen differentially expressed genes (DEGs) between EOC and normal ovarian tissue samples and then used Clusterprofiler to do functional and pathway enrichment analyses. We utilized Search Tool for the Retrieval of Interacting Genes Database to assess protein–protein interaction (PPI) information and the plug-in Molecular Complex Detection to screen hub modules of PPI network in Cytoscape, and then performed functional analysis on the genes in the hub module. Next, we utilized the Weighted Gene Expression Network Analysis package to establish a co-expression network. Validation of the key genes in databases and Gene Expression Profiling Interactive Analysis (GEPIA) were completed. Finally, we used quantitative real-time PCR to validate hub gene expression in clinical tissue samples. RESULTS: We analyzed the DEGs (96 samples of EOC tissue and 16 samples of normal ovarian tissue) for functional analysis, which showed that upregulated DEGs were strikingly enriched in phosphate ion binding and the downregulated DEGs were significantly enriched in glycosaminoglycan binding. In the PPI network, CDK1 was screened as the most relevant protein. In the co-expression network, one EOC-related module was identified. For survival analysis, database and clinical sample validation of genes in the turquoise module, we found that ITLN1 was positively correlated with EOC prognosis and had lower level in EOC than in normal tissues, which was consistent with the results predicted in GEPIA. CONCLUSION: In this study, we exhibited the key genes and pathways involved in EOC and speculated that ITLN1 was a tumor suppressor which could be used as a potential biomarker for treating EOC, Gene Expression Omnibus, prognosis. |
format | Online Article Text |
id | pubmed-6438265 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-64382652019-04-15 ITLNI identified by comprehensive bioinformatic analysis as a hub candidate biological target in human epithelial ovarian cancer Liu, JinHui Li, SiYue Liang, JunYa Jiang, Yi Wan, YiCong Zhou, ShuLin Cheng, WenJun Cancer Manag Res Original Research BACKGROUND: Epithelial ovarian cancer (EOC) is a female malignant tumor. Bioinformatics has been widely utilized to analyze genes related to cancer progression. Targeted therapy for specific biological factors has become more valuable. MATERIALS AND METHODS: Gene expression profiles of GSE18520 and GSE27651 were downloaded from Gene Expression Omnibus. We used the “limma” package to screen differentially expressed genes (DEGs) between EOC and normal ovarian tissue samples and then used Clusterprofiler to do functional and pathway enrichment analyses. We utilized Search Tool for the Retrieval of Interacting Genes Database to assess protein–protein interaction (PPI) information and the plug-in Molecular Complex Detection to screen hub modules of PPI network in Cytoscape, and then performed functional analysis on the genes in the hub module. Next, we utilized the Weighted Gene Expression Network Analysis package to establish a co-expression network. Validation of the key genes in databases and Gene Expression Profiling Interactive Analysis (GEPIA) were completed. Finally, we used quantitative real-time PCR to validate hub gene expression in clinical tissue samples. RESULTS: We analyzed the DEGs (96 samples of EOC tissue and 16 samples of normal ovarian tissue) for functional analysis, which showed that upregulated DEGs were strikingly enriched in phosphate ion binding and the downregulated DEGs were significantly enriched in glycosaminoglycan binding. In the PPI network, CDK1 was screened as the most relevant protein. In the co-expression network, one EOC-related module was identified. For survival analysis, database and clinical sample validation of genes in the turquoise module, we found that ITLN1 was positively correlated with EOC prognosis and had lower level in EOC than in normal tissues, which was consistent with the results predicted in GEPIA. CONCLUSION: In this study, we exhibited the key genes and pathways involved in EOC and speculated that ITLN1 was a tumor suppressor which could be used as a potential biomarker for treating EOC, Gene Expression Omnibus, prognosis. Dove Medical Press 2019-03-25 /pmc/articles/PMC6438265/ /pubmed/30988639 http://dx.doi.org/10.2147/CMAR.S189784 Text en © 2019 Liu et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Liu, JinHui Li, SiYue Liang, JunYa Jiang, Yi Wan, YiCong Zhou, ShuLin Cheng, WenJun ITLNI identified by comprehensive bioinformatic analysis as a hub candidate biological target in human epithelial ovarian cancer |
title | ITLNI identified by comprehensive bioinformatic analysis as a hub candidate biological target in human epithelial ovarian cancer |
title_full | ITLNI identified by comprehensive bioinformatic analysis as a hub candidate biological target in human epithelial ovarian cancer |
title_fullStr | ITLNI identified by comprehensive bioinformatic analysis as a hub candidate biological target in human epithelial ovarian cancer |
title_full_unstemmed | ITLNI identified by comprehensive bioinformatic analysis as a hub candidate biological target in human epithelial ovarian cancer |
title_short | ITLNI identified by comprehensive bioinformatic analysis as a hub candidate biological target in human epithelial ovarian cancer |
title_sort | itlni identified by comprehensive bioinformatic analysis as a hub candidate biological target in human epithelial ovarian cancer |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438265/ https://www.ncbi.nlm.nih.gov/pubmed/30988639 http://dx.doi.org/10.2147/CMAR.S189784 |
work_keys_str_mv | AT liujinhui itlniidentifiedbycomprehensivebioinformaticanalysisasahubcandidatebiologicaltargetinhumanepithelialovariancancer AT lisiyue itlniidentifiedbycomprehensivebioinformaticanalysisasahubcandidatebiologicaltargetinhumanepithelialovariancancer AT liangjunya itlniidentifiedbycomprehensivebioinformaticanalysisasahubcandidatebiologicaltargetinhumanepithelialovariancancer AT jiangyi itlniidentifiedbycomprehensivebioinformaticanalysisasahubcandidatebiologicaltargetinhumanepithelialovariancancer AT wanyicong itlniidentifiedbycomprehensivebioinformaticanalysisasahubcandidatebiologicaltargetinhumanepithelialovariancancer AT zhoushulin itlniidentifiedbycomprehensivebioinformaticanalysisasahubcandidatebiologicaltargetinhumanepithelialovariancancer AT chengwenjun itlniidentifiedbycomprehensivebioinformaticanalysisasahubcandidatebiologicaltargetinhumanepithelialovariancancer |