Cargando…

Solamargine inhibits gastric cancer progression by regulating the expression of lncNEAT1_2 via the MAPK signaling pathway

Solamargine, a derivative from the steroidal solasodine in Solanum species, has exhibited anticancer activities in numerous types of cancer; however, its role in gastric cancer (GC) remains unknown. In the present study, it was demonstrated that Solamargine suppressed the viability of five gastric c...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Runjia, Wang, Xiaohong, Hu, Ying, Du, Hong, Dong, Bin, Ao, Sheng, Zhang, Li, Sun, Zhijian, Zhang, Lianhai, Lv, Guoqing, Ji, Jiafu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438418/
https://www.ncbi.nlm.nih.gov/pubmed/30864686
http://dx.doi.org/10.3892/ijo.2019.4744
Descripción
Sumario:Solamargine, a derivative from the steroidal solasodine in Solanum species, has exhibited anticancer activities in numerous types of cancer; however, its role in gastric cancer (GC) remains unknown. In the present study, it was demonstrated that Solamargine suppressed the viability of five gastric cancer cell lines in a dose-dependent manner and induced notable alterations in morphology. Treatment with Solamargine promoted cell apoptosis (P<0.01). Solamargine increased the expression of long noncoding RNA (lnc) p53 induced transcript and lnc nuclear paraspeckle assembly transcript 1 (NEAT1)_2 (P<0.01) in GC by reducing the phosphorylation of extracellular signal-regulated kinase (Erk)1/2 mitogen-activated protein kinase (MAPK). To gain insight into the potential mechanism, an Erk1/2 inhibitor (U0126) was applied. The results revealed that lncNEAT1_2 expression levels increased, which was consistent with the effects of Solamargine. Downregulation of lncNEAT1_2 in GC cells revealed no effect on the expression levels of total Erk1/2 and, and counteracted the effect of Solamargine. Solamargine was observed to increase the expression of lncNEAT1_2 via the Erk1/2 MAPK signaling pathway. Of note, the knockdown of lncNEAT1_2 reduced the inhibitory effect of Solamargine (P<0.05). Additionally, experiments in vivo and in primary GC cells from patients demonstrated that Solamargine significantly suppressed tumor growth (P<0.05). In vivo analysis of a xenograft mouse model further supported that Solamargine could induce the apoptosis of cancer cells in tumor tissue as observed by a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling and H&E staining (P<0.05). Experiments in primary GC cells from patients verified the anti-tumor effect of Solamargine. In summary, the findings of the present study indicated that Solamargine inhibited the progression of GC by regulating lncNeat1_2 via the MAPK pathway.