Cargando…
Intervention and Identifiability in Latent Variable Modelling
We consider the use of interventions for resolving a problem of unidentified statistical models. The leading examples are from latent variable modelling, an influential statistical tool in the social sciences. We first explain the problem of statistical identifiability and contrast it with the ident...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438491/ https://www.ncbi.nlm.nih.gov/pubmed/30996521 http://dx.doi.org/10.1007/s11023-018-9460-y |
_version_ | 1783407107598450688 |
---|---|
author | Romeijn, Jan-Willem Williamson, Jon |
author_facet | Romeijn, Jan-Willem Williamson, Jon |
author_sort | Romeijn, Jan-Willem |
collection | PubMed |
description | We consider the use of interventions for resolving a problem of unidentified statistical models. The leading examples are from latent variable modelling, an influential statistical tool in the social sciences. We first explain the problem of statistical identifiability and contrast it with the identifiability of causal models. We then draw a parallel between the latent variable models and Bayesian networks with hidden nodes. This allows us to clarify the use of interventions for dealing with unidentified statistical models. We end by discussing the philosophical and methodological import of our result. |
format | Online Article Text |
id | pubmed-6438491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-64384912019-04-15 Intervention and Identifiability in Latent Variable Modelling Romeijn, Jan-Willem Williamson, Jon Minds Mach (Dordr) Article We consider the use of interventions for resolving a problem of unidentified statistical models. The leading examples are from latent variable modelling, an influential statistical tool in the social sciences. We first explain the problem of statistical identifiability and contrast it with the identifiability of causal models. We then draw a parallel between the latent variable models and Bayesian networks with hidden nodes. This allows us to clarify the use of interventions for dealing with unidentified statistical models. We end by discussing the philosophical and methodological import of our result. Springer Netherlands 2018-03-30 2018 /pmc/articles/PMC6438491/ /pubmed/30996521 http://dx.doi.org/10.1007/s11023-018-9460-y Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Romeijn, Jan-Willem Williamson, Jon Intervention and Identifiability in Latent Variable Modelling |
title | Intervention and Identifiability in Latent Variable Modelling |
title_full | Intervention and Identifiability in Latent Variable Modelling |
title_fullStr | Intervention and Identifiability in Latent Variable Modelling |
title_full_unstemmed | Intervention and Identifiability in Latent Variable Modelling |
title_short | Intervention and Identifiability in Latent Variable Modelling |
title_sort | intervention and identifiability in latent variable modelling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438491/ https://www.ncbi.nlm.nih.gov/pubmed/30996521 http://dx.doi.org/10.1007/s11023-018-9460-y |
work_keys_str_mv | AT romeijnjanwillem interventionandidentifiabilityinlatentvariablemodelling AT williamsonjon interventionandidentifiabilityinlatentvariablemodelling |