Cargando…

A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon

A small-scale, two-phase (liquid/gas) xenon time projection chamber (Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for...

Descripción completa

Detalles Bibliográficos
Autores principales: Baudis, Laura, Biondi, Yanina, Capelli, Chiara, Galloway, Michelle, Kazama, Shingo, Kish, Alexander, Pakarha, Payam, Piastra, Francesco, Wulf, Julien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438493/
https://www.ncbi.nlm.nih.gov/pubmed/30996663
http://dx.doi.org/10.1140/epjc/s10052-018-5801-5
_version_ 1783407108062969856
author Baudis, Laura
Biondi, Yanina
Capelli, Chiara
Galloway, Michelle
Kazama, Shingo
Kish, Alexander
Pakarha, Payam
Piastra, Francesco
Wulf, Julien
author_facet Baudis, Laura
Biondi, Yanina
Capelli, Chiara
Galloway, Michelle
Kazama, Shingo
Kish, Alexander
Pakarha, Payam
Piastra, Francesco
Wulf, Julien
author_sort Baudis, Laura
collection PubMed
description A small-scale, two-phase (liquid/gas) xenon time projection chamber (Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal [Formula: see text] Kr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 [Formula: see text] s. The relative energy resolution, [Formula: see text] , is 11.9 and 5.8% at 9.4 and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values.
format Online
Article
Text
id pubmed-6438493
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-64384932019-04-15 A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon Baudis, Laura Biondi, Yanina Capelli, Chiara Galloway, Michelle Kazama, Shingo Kish, Alexander Pakarha, Payam Piastra, Francesco Wulf, Julien Eur Phys J C Part Fields Regular Article - Experimental Physics A small-scale, two-phase (liquid/gas) xenon time projection chamber (Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal [Formula: see text] Kr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 [Formula: see text] s. The relative energy resolution, [Formula: see text] , is 11.9 and 5.8% at 9.4 and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values. Springer Berlin Heidelberg 2018-04-30 2018 /pmc/articles/PMC6438493/ /pubmed/30996663 http://dx.doi.org/10.1140/epjc/s10052-018-5801-5 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3
spellingShingle Regular Article - Experimental Physics
Baudis, Laura
Biondi, Yanina
Capelli, Chiara
Galloway, Michelle
Kazama, Shingo
Kish, Alexander
Pakarha, Payam
Piastra, Francesco
Wulf, Julien
A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon
title A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon
title_full A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon
title_fullStr A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon
title_full_unstemmed A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon
title_short A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon
title_sort dual-phase xenon tpc for scintillation and ionisation yield measurements in liquid xenon
topic Regular Article - Experimental Physics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438493/
https://www.ncbi.nlm.nih.gov/pubmed/30996663
http://dx.doi.org/10.1140/epjc/s10052-018-5801-5
work_keys_str_mv AT baudislaura adualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT biondiyanina adualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT capellichiara adualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT gallowaymichelle adualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT kazamashingo adualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT kishalexander adualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT pakarhapayam adualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT piastrafrancesco adualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT wulfjulien adualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT baudislaura dualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT biondiyanina dualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT capellichiara dualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT gallowaymichelle dualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT kazamashingo dualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT kishalexander dualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT pakarhapayam dualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT piastrafrancesco dualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon
AT wulfjulien dualphasexenontpcforscintillationandionisationyieldmeasurementsinliquidxenon