Cargando…
Discovering Brain Mechanisms Using Network Analysis and Causal Modeling
Mechanist philosophers have examined several strategies scientists use for discovering causal mechanisms in neuroscience. Findings about the anatomical organization of the brain play a central role in several such strategies. Little attention has been paid, however, to the use of network analysis an...
Autores principales: | Colombo, Matteo, Weinberger, Naftali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438494/ https://www.ncbi.nlm.nih.gov/pubmed/30996522 http://dx.doi.org/10.1007/s11023-017-9447-0 |
Ejemplares similares
-
Discovering causal interactions using Bayesian network scoring and information gain
por: Zeng, Zexian, et al.
Publicado: (2016) -
Discovering graphical Granger causality using the truncating lasso penalty
por: Shojaie, Ali, et al.
Publicado: (2010) -
Tumour-specific Causal Inference Discovers Distinct Disease Mechanisms Underlying Cancer Subtypes
por: Xue, Yifan, et al.
Publicado: (2019) -
Dynamic causal modeling and Granger causality Comments on: The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution
por: Friston, Karl
Publicado: (2011) -
Discovering functional impacts of miRNAs in cancers using a causal deep learning model
por: Chen, Lujia, et al.
Publicado: (2018)