Cargando…
Modeling second-order boundary perception: A machine learning approach
Visual pattern detection and discrimination are essential first steps for scene analysis. Numerous human psychophysical studies have modeled visual pattern detection and discrimination by estimating linear templates for classifying noisy stimuli defined by spatial variations in pixel intensities. Ho...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438569/ https://www.ncbi.nlm.nih.gov/pubmed/30883556 http://dx.doi.org/10.1371/journal.pcbi.1006829 |
_version_ | 1783407121154441216 |
---|---|
author | DiMattina, Christopher Baker, Curtis L. |
author_facet | DiMattina, Christopher Baker, Curtis L. |
author_sort | DiMattina, Christopher |
collection | PubMed |
description | Visual pattern detection and discrimination are essential first steps for scene analysis. Numerous human psychophysical studies have modeled visual pattern detection and discrimination by estimating linear templates for classifying noisy stimuli defined by spatial variations in pixel intensities. However, such methods are poorly suited to understanding sensory processing mechanisms for complex visual stimuli such as second-order boundaries defined by spatial differences in contrast or texture. We introduce a novel machine learning framework for modeling human perception of second-order visual stimuli, using image-computable hierarchical neural network models fit directly to psychophysical trial data. This framework is applied to modeling visual processing of boundaries defined by differences in the contrast of a carrier texture pattern, in two different psychophysical tasks: (1) boundary orientation identification, and (2) fine orientation discrimination. Cross-validation analysis is employed to optimize model hyper-parameters, and demonstrate that these models are able to accurately predict human performance on novel stimulus sets not used for fitting model parameters. We find that, like the ideal observer, human observers take a region-based approach to the orientation identification task, while taking an edge-based approach to the fine orientation discrimination task. How observers integrate contrast modulation across orientation channels is investigated by fitting psychophysical data with two models representing competing hypotheses, revealing a preference for a model which combines multiple orientations at the earliest possible stage. Our results suggest that this machine learning approach has much potential to advance the study of second-order visual processing, and we outline future steps towards generalizing the method to modeling visual segmentation of natural texture boundaries. This study demonstrates how machine learning methodology can be fruitfully applied to psychophysical studies of second-order visual processing. |
format | Online Article Text |
id | pubmed-6438569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-64385692019-04-12 Modeling second-order boundary perception: A machine learning approach DiMattina, Christopher Baker, Curtis L. PLoS Comput Biol Research Article Visual pattern detection and discrimination are essential first steps for scene analysis. Numerous human psychophysical studies have modeled visual pattern detection and discrimination by estimating linear templates for classifying noisy stimuli defined by spatial variations in pixel intensities. However, such methods are poorly suited to understanding sensory processing mechanisms for complex visual stimuli such as second-order boundaries defined by spatial differences in contrast or texture. We introduce a novel machine learning framework for modeling human perception of second-order visual stimuli, using image-computable hierarchical neural network models fit directly to psychophysical trial data. This framework is applied to modeling visual processing of boundaries defined by differences in the contrast of a carrier texture pattern, in two different psychophysical tasks: (1) boundary orientation identification, and (2) fine orientation discrimination. Cross-validation analysis is employed to optimize model hyper-parameters, and demonstrate that these models are able to accurately predict human performance on novel stimulus sets not used for fitting model parameters. We find that, like the ideal observer, human observers take a region-based approach to the orientation identification task, while taking an edge-based approach to the fine orientation discrimination task. How observers integrate contrast modulation across orientation channels is investigated by fitting psychophysical data with two models representing competing hypotheses, revealing a preference for a model which combines multiple orientations at the earliest possible stage. Our results suggest that this machine learning approach has much potential to advance the study of second-order visual processing, and we outline future steps towards generalizing the method to modeling visual segmentation of natural texture boundaries. This study demonstrates how machine learning methodology can be fruitfully applied to psychophysical studies of second-order visual processing. Public Library of Science 2019-03-18 /pmc/articles/PMC6438569/ /pubmed/30883556 http://dx.doi.org/10.1371/journal.pcbi.1006829 Text en © 2019 DiMattina, Baker http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article DiMattina, Christopher Baker, Curtis L. Modeling second-order boundary perception: A machine learning approach |
title | Modeling second-order boundary perception: A machine learning approach |
title_full | Modeling second-order boundary perception: A machine learning approach |
title_fullStr | Modeling second-order boundary perception: A machine learning approach |
title_full_unstemmed | Modeling second-order boundary perception: A machine learning approach |
title_short | Modeling second-order boundary perception: A machine learning approach |
title_sort | modeling second-order boundary perception: a machine learning approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438569/ https://www.ncbi.nlm.nih.gov/pubmed/30883556 http://dx.doi.org/10.1371/journal.pcbi.1006829 |
work_keys_str_mv | AT dimattinachristopher modelingsecondorderboundaryperceptionamachinelearningapproach AT bakercurtisl modelingsecondorderboundaryperceptionamachinelearningapproach |