Cargando…
Propagation of Subseasonal Equatorially-Forced Coastal Trapped Waves down to the Benguela Upwelling System
The oceanic connection between the coastal variability along the southwestern African coasts and the linear equatorial dynamics at subseasonal time-scales (<120 days) is examined using a variety of model outputs, ranging from linear to general circulation models. We focus on the equatorially-forc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438976/ https://www.ncbi.nlm.nih.gov/pubmed/30923330 http://dx.doi.org/10.1038/s41598-019-41847-1 |
Sumario: | The oceanic connection between the coastal variability along the southwestern African coasts and the linear equatorial dynamics at subseasonal time-scales (<120 days) is examined using a variety of model outputs, ranging from linear to general circulation models. We focus on the equatorially-forced fast and weakly dissipative first-mode coastal trapped waves which are shown to propagate down to the southern tip of Africa. In the eastern equatorial Atlantic, the first-mode equatorial forcing is tangled with the higher-order Kelvin wave modes and is overshadowed by the dominant second baroclinic mode. The latter is slower and peaks 10 days after the concealed first-mode contribution. Within this time frame, the remotely-forced first-mode coastal trapped waves impinge on the variability of the Benguela upwelling ecosystem, almost in phase with the subseasonal sea level fluctuations in the Gulf of Guinea. Over 1993–2008, the equatorial forcing undergoes a substantial interannual modulation. Periods of energetic first-mode equatorial Kelvin waves coincide with a strong subseasonal coastal wind activity that breaks the stronger equatorial connection. This suggests the existence of a large-scale atmospheric connection between the equatorial wave forcing and the along-shore winds in the Benguela, modulating the maximum latitude at which the equatorial dynamics impacts the local marine resources. |
---|