Cargando…

Role of temperature and carbonate system variability on a host-parasite system: Implications for the gigantism hypothesis

Biological interactions and environmental constraints alter life-history traits, modifying organismal performances. Trematode parasites often impact their hosts by inducing parasitic castration, frequently correlated with increased body size in the host (i.e., gigantism hypothesis), which is postula...

Descripción completa

Detalles Bibliográficos
Autores principales: García-Huidobro, M.R., Varas, O., George-Nascimento, M., Pulgar, J., Aldana, M., Lardies, M.A., Lagos, N.A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439230/
https://www.ncbi.nlm.nih.gov/pubmed/30976511
http://dx.doi.org/10.1016/j.ijppaw.2019.03.016
_version_ 1783407221102608384
author García-Huidobro, M.R.
Varas, O.
George-Nascimento, M.
Pulgar, J.
Aldana, M.
Lardies, M.A.
Lagos, N.A.
author_facet García-Huidobro, M.R.
Varas, O.
George-Nascimento, M.
Pulgar, J.
Aldana, M.
Lardies, M.A.
Lagos, N.A.
author_sort García-Huidobro, M.R.
collection PubMed
description Biological interactions and environmental constraints alter life-history traits, modifying organismal performances. Trematode parasites often impact their hosts by inducing parasitic castration, frequently correlated with increased body size in the host (i.e., gigantism hypothesis), which is postulated to reflect the re-allocation of energy released by the reduction in the reproductive process. In this study, we compared the effect of a trematode species on shell size and morphology in adult individuals of the intertidal mussels Perumytilus purpuratus (>20 mm) collected from two local populations of contrasting environmental regimes experienced in central-southern Chile. Our field data indicates that in both study locations, parasitized mussels evidenced higher body sizes (shell length, total weight and volume) as compared with non-parasitized. In addition, parasitized mussels from the southern location evidenced thinner shells than non-parasitized ones and those collected from central Chile, suggesting geographical variation in shell carbonate precipitation across intertidal habitats of the Chilean coast. In laboratory conditions, mussels collected from a local population in central Chile were exposed to two temperature treatments (12 and 18 °C). Parasitized mussels showed higher growth rates than non-parasitized, regardless of the seawater temperature treatments. However, the metabolic rate was not influenced by the parasite condition or the temperature treatments. Our field and laboratory results support the parasite-induced gigantism hypothesis, and suggest that both the thermal environment and geographic location explain only a portion of the increased body size, while the parasitic condition is the most plausible factor modulating the outcome of this host-parasite interaction.
format Online
Article
Text
id pubmed-6439230
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-64392302019-04-11 Role of temperature and carbonate system variability on a host-parasite system: Implications for the gigantism hypothesis García-Huidobro, M.R. Varas, O. George-Nascimento, M. Pulgar, J. Aldana, M. Lardies, M.A. Lagos, N.A. Int J Parasitol Parasites Wildl Regular article Biological interactions and environmental constraints alter life-history traits, modifying organismal performances. Trematode parasites often impact their hosts by inducing parasitic castration, frequently correlated with increased body size in the host (i.e., gigantism hypothesis), which is postulated to reflect the re-allocation of energy released by the reduction in the reproductive process. In this study, we compared the effect of a trematode species on shell size and morphology in adult individuals of the intertidal mussels Perumytilus purpuratus (>20 mm) collected from two local populations of contrasting environmental regimes experienced in central-southern Chile. Our field data indicates that in both study locations, parasitized mussels evidenced higher body sizes (shell length, total weight and volume) as compared with non-parasitized. In addition, parasitized mussels from the southern location evidenced thinner shells than non-parasitized ones and those collected from central Chile, suggesting geographical variation in shell carbonate precipitation across intertidal habitats of the Chilean coast. In laboratory conditions, mussels collected from a local population in central Chile were exposed to two temperature treatments (12 and 18 °C). Parasitized mussels showed higher growth rates than non-parasitized, regardless of the seawater temperature treatments. However, the metabolic rate was not influenced by the parasite condition or the temperature treatments. Our field and laboratory results support the parasite-induced gigantism hypothesis, and suggest that both the thermal environment and geographic location explain only a portion of the increased body size, while the parasitic condition is the most plausible factor modulating the outcome of this host-parasite interaction. Elsevier 2019-03-23 /pmc/articles/PMC6439230/ /pubmed/30976511 http://dx.doi.org/10.1016/j.ijppaw.2019.03.016 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular article
García-Huidobro, M.R.
Varas, O.
George-Nascimento, M.
Pulgar, J.
Aldana, M.
Lardies, M.A.
Lagos, N.A.
Role of temperature and carbonate system variability on a host-parasite system: Implications for the gigantism hypothesis
title Role of temperature and carbonate system variability on a host-parasite system: Implications for the gigantism hypothesis
title_full Role of temperature and carbonate system variability on a host-parasite system: Implications for the gigantism hypothesis
title_fullStr Role of temperature and carbonate system variability on a host-parasite system: Implications for the gigantism hypothesis
title_full_unstemmed Role of temperature and carbonate system variability on a host-parasite system: Implications for the gigantism hypothesis
title_short Role of temperature and carbonate system variability on a host-parasite system: Implications for the gigantism hypothesis
title_sort role of temperature and carbonate system variability on a host-parasite system: implications for the gigantism hypothesis
topic Regular article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439230/
https://www.ncbi.nlm.nih.gov/pubmed/30976511
http://dx.doi.org/10.1016/j.ijppaw.2019.03.016
work_keys_str_mv AT garciahuidobromr roleoftemperatureandcarbonatesystemvariabilityonahostparasitesystemimplicationsforthegigantismhypothesis
AT varaso roleoftemperatureandcarbonatesystemvariabilityonahostparasitesystemimplicationsforthegigantismhypothesis
AT georgenascimentom roleoftemperatureandcarbonatesystemvariabilityonahostparasitesystemimplicationsforthegigantismhypothesis
AT pulgarj roleoftemperatureandcarbonatesystemvariabilityonahostparasitesystemimplicationsforthegigantismhypothesis
AT aldanam roleoftemperatureandcarbonatesystemvariabilityonahostparasitesystemimplicationsforthegigantismhypothesis
AT lardiesma roleoftemperatureandcarbonatesystemvariabilityonahostparasitesystemimplicationsforthegigantismhypothesis
AT lagosna roleoftemperatureandcarbonatesystemvariabilityonahostparasitesystemimplicationsforthegigantismhypothesis