Cargando…
Rapid change in host specificity in a field population of the biological control organism Pasteuria penetrans
In biological control, populations of both the biological control agent and the pest have the potential to evolve and even to coevolve. This feature marks the most powerful and unpredictable aspect of biological control strategies. In particular, evolutionary change in host specificity of the biolog...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439493/ https://www.ncbi.nlm.nih.gov/pubmed/30976307 http://dx.doi.org/10.1111/eva.12750 |
_version_ | 1783407274669113344 |
---|---|
author | Liu, Chang Gibson, Amanda Kyle Timper, Patricia Morran, Levi T. Tubbs, R. Scott |
author_facet | Liu, Chang Gibson, Amanda Kyle Timper, Patricia Morran, Levi T. Tubbs, R. Scott |
author_sort | Liu, Chang |
collection | PubMed |
description | In biological control, populations of both the biological control agent and the pest have the potential to evolve and even to coevolve. This feature marks the most powerful and unpredictable aspect of biological control strategies. In particular, evolutionary change in host specificity of the biological control agent could increase or decrease its efficacy. Here, we tested for change in host specificity in a field population of the biological control organism Pasteuria penetrans. Pasteuria penetrans is an obligate parasite of the plant parasitic nematodes Meloidogyne spp., which are major agricultural pests. From 2013 through 2016, we collected yearly samples of P. penetrans from eight plots in a field infested with M. arenaria. Plots were planted either with peanut (Arachis hypogaea) or with a rotation of peanut and soybean (Glycine max). To detect temporal change in host specificity, we tested P. penetrans samples annually for their ability to attach to (and thereby infect) four clonal lines of M. arenaria. After controlling for temporal variation in parasite abundance, we found that P. penetrans from each of the eight plots showed temporal variation in their attachment specificity to the clonal host lines. The trajectories of change in host specificity were largely unique to each plot. This result suggests that local forces, at the level of individual plots, drive change in specificity. We hypothesize that coevolution with local M. arenaria hosts may be one such force. Lastly, we observed an overall reduction in attachment rate with samples from rotation plots relative to samples from peanut plots. This result may reflect lower abundance of P. penetrans under crop rotation, potentially due to suppressed density of host nematodes. As a whole, the results show local change in specificity on a yearly basis, consistent with evolution of a biological control organism in its ability to infect and suppress its target pest. |
format | Online Article Text |
id | pubmed-6439493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64394932019-04-11 Rapid change in host specificity in a field population of the biological control organism Pasteuria penetrans Liu, Chang Gibson, Amanda Kyle Timper, Patricia Morran, Levi T. Tubbs, R. Scott Evol Appl Original Articles In biological control, populations of both the biological control agent and the pest have the potential to evolve and even to coevolve. This feature marks the most powerful and unpredictable aspect of biological control strategies. In particular, evolutionary change in host specificity of the biological control agent could increase or decrease its efficacy. Here, we tested for change in host specificity in a field population of the biological control organism Pasteuria penetrans. Pasteuria penetrans is an obligate parasite of the plant parasitic nematodes Meloidogyne spp., which are major agricultural pests. From 2013 through 2016, we collected yearly samples of P. penetrans from eight plots in a field infested with M. arenaria. Plots were planted either with peanut (Arachis hypogaea) or with a rotation of peanut and soybean (Glycine max). To detect temporal change in host specificity, we tested P. penetrans samples annually for their ability to attach to (and thereby infect) four clonal lines of M. arenaria. After controlling for temporal variation in parasite abundance, we found that P. penetrans from each of the eight plots showed temporal variation in their attachment specificity to the clonal host lines. The trajectories of change in host specificity were largely unique to each plot. This result suggests that local forces, at the level of individual plots, drive change in specificity. We hypothesize that coevolution with local M. arenaria hosts may be one such force. Lastly, we observed an overall reduction in attachment rate with samples from rotation plots relative to samples from peanut plots. This result may reflect lower abundance of P. penetrans under crop rotation, potentially due to suppressed density of host nematodes. As a whole, the results show local change in specificity on a yearly basis, consistent with evolution of a biological control organism in its ability to infect and suppress its target pest. John Wiley and Sons Inc. 2018-12-31 /pmc/articles/PMC6439493/ /pubmed/30976307 http://dx.doi.org/10.1111/eva.12750 Text en © 2018 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd This article has been contributed to by US Government employees and their work is in the public domain in the USA This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Liu, Chang Gibson, Amanda Kyle Timper, Patricia Morran, Levi T. Tubbs, R. Scott Rapid change in host specificity in a field population of the biological control organism Pasteuria penetrans |
title | Rapid change in host specificity in a field population of the biological control organism Pasteuria penetrans
|
title_full | Rapid change in host specificity in a field population of the biological control organism Pasteuria penetrans
|
title_fullStr | Rapid change in host specificity in a field population of the biological control organism Pasteuria penetrans
|
title_full_unstemmed | Rapid change in host specificity in a field population of the biological control organism Pasteuria penetrans
|
title_short | Rapid change in host specificity in a field population of the biological control organism Pasteuria penetrans
|
title_sort | rapid change in host specificity in a field population of the biological control organism pasteuria penetrans |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439493/ https://www.ncbi.nlm.nih.gov/pubmed/30976307 http://dx.doi.org/10.1111/eva.12750 |
work_keys_str_mv | AT liuchang rapidchangeinhostspecificityinafieldpopulationofthebiologicalcontrolorganismpasteuriapenetrans AT gibsonamandakyle rapidchangeinhostspecificityinafieldpopulationofthebiologicalcontrolorganismpasteuriapenetrans AT timperpatricia rapidchangeinhostspecificityinafieldpopulationofthebiologicalcontrolorganismpasteuriapenetrans AT morranlevit rapidchangeinhostspecificityinafieldpopulationofthebiologicalcontrolorganismpasteuriapenetrans AT tubbsrscott rapidchangeinhostspecificityinafieldpopulationofthebiologicalcontrolorganismpasteuriapenetrans |