Cargando…
Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome
There remains a pressing need for biomarkers that can predict who will progress to active tuberculosis (TB) after exposure to Mycobacterium tuberculosis (MTB) bacterium. By analyzing cohorts of household contacts of TB index cases (HHCs) and a stringent non-human primate (NHP) challenge model, we ev...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440524/ https://www.ncbi.nlm.nih.gov/pubmed/30967866 http://dx.doi.org/10.3389/fimmu.2019.00527 |
_version_ | 1783407404117917696 |
---|---|
author | Duffy, Fergal J. Weiner, January Hansen, Scott Tabb, David L. Suliman, Sara Thompson, Ethan Maertzdorf, Jeroen Shankar, Smitha Tromp, Gerard Parida, Shreemanta Dover, Drew Axthelm, Michael K. Sutherland, Jayne S. Dockrell, Hazel M. Ottenhoff, Tom H. M. Scriba, Thomas J. Picker, Louis J. Walzl, Gerhard Kaufmann, Stefan H. E. Zak, Daniel E. |
author_facet | Duffy, Fergal J. Weiner, January Hansen, Scott Tabb, David L. Suliman, Sara Thompson, Ethan Maertzdorf, Jeroen Shankar, Smitha Tromp, Gerard Parida, Shreemanta Dover, Drew Axthelm, Michael K. Sutherland, Jayne S. Dockrell, Hazel M. Ottenhoff, Tom H. M. Scriba, Thomas J. Picker, Louis J. Walzl, Gerhard Kaufmann, Stefan H. E. Zak, Daniel E. |
author_sort | Duffy, Fergal J. |
collection | PubMed |
description | There remains a pressing need for biomarkers that can predict who will progress to active tuberculosis (TB) after exposure to Mycobacterium tuberculosis (MTB) bacterium. By analyzing cohorts of household contacts of TB index cases (HHCs) and a stringent non-human primate (NHP) challenge model, we evaluated whether integration of blood transcriptional profiling with serum metabolomic profiling can provide new understanding of disease processes and enable improved prediction of TB progression. Compared to either alone, the combined application of pre-existing transcriptome- and metabolome-based signatures more accurately predicted TB progression in the HHC cohorts and more accurately predicted disease severity in the NHPs. Pathway and data-driven correlation analyses of the integrated transcriptional and metabolomic datasets further identified novel immunometabolomic signatures significantly associated with TB progression in HHCs and NHPs, implicating cortisol, tryptophan, glutathione, and tRNA acylation networks. These results demonstrate the power of multi-omics analysis to provide new insights into complex disease processes. |
format | Online Article Text |
id | pubmed-6440524 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64405242019-04-09 Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome Duffy, Fergal J. Weiner, January Hansen, Scott Tabb, David L. Suliman, Sara Thompson, Ethan Maertzdorf, Jeroen Shankar, Smitha Tromp, Gerard Parida, Shreemanta Dover, Drew Axthelm, Michael K. Sutherland, Jayne S. Dockrell, Hazel M. Ottenhoff, Tom H. M. Scriba, Thomas J. Picker, Louis J. Walzl, Gerhard Kaufmann, Stefan H. E. Zak, Daniel E. Front Immunol Immunology There remains a pressing need for biomarkers that can predict who will progress to active tuberculosis (TB) after exposure to Mycobacterium tuberculosis (MTB) bacterium. By analyzing cohorts of household contacts of TB index cases (HHCs) and a stringent non-human primate (NHP) challenge model, we evaluated whether integration of blood transcriptional profiling with serum metabolomic profiling can provide new understanding of disease processes and enable improved prediction of TB progression. Compared to either alone, the combined application of pre-existing transcriptome- and metabolome-based signatures more accurately predicted TB progression in the HHC cohorts and more accurately predicted disease severity in the NHPs. Pathway and data-driven correlation analyses of the integrated transcriptional and metabolomic datasets further identified novel immunometabolomic signatures significantly associated with TB progression in HHCs and NHPs, implicating cortisol, tryptophan, glutathione, and tRNA acylation networks. These results demonstrate the power of multi-omics analysis to provide new insights into complex disease processes. Frontiers Media S.A. 2019-03-22 /pmc/articles/PMC6440524/ /pubmed/30967866 http://dx.doi.org/10.3389/fimmu.2019.00527 Text en Copyright © 2019 Duffy, Weiner, Hansen, Tabb, Suliman, Thompson, Maertzdorf, Shankar, Tromp, Parida, Dover, Axthelm, Sutherland, Dockrell, Ottenhoff, Scriba, Picker, Walzl, Kaufmann, Zak and The GC6-74 Consortium. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Duffy, Fergal J. Weiner, January Hansen, Scott Tabb, David L. Suliman, Sara Thompson, Ethan Maertzdorf, Jeroen Shankar, Smitha Tromp, Gerard Parida, Shreemanta Dover, Drew Axthelm, Michael K. Sutherland, Jayne S. Dockrell, Hazel M. Ottenhoff, Tom H. M. Scriba, Thomas J. Picker, Louis J. Walzl, Gerhard Kaufmann, Stefan H. E. Zak, Daniel E. Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome |
title | Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome |
title_full | Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome |
title_fullStr | Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome |
title_full_unstemmed | Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome |
title_short | Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome |
title_sort | immunometabolic signatures predict risk of progression to active tuberculosis and disease outcome |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440524/ https://www.ncbi.nlm.nih.gov/pubmed/30967866 http://dx.doi.org/10.3389/fimmu.2019.00527 |
work_keys_str_mv | AT duffyfergalj immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT weinerjanuary immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT hansenscott immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT tabbdavidl immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT sulimansara immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT thompsonethan immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT maertzdorfjeroen immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT shankarsmitha immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT trompgerard immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT paridashreemanta immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT doverdrew immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT axthelmmichaelk immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT sutherlandjaynes immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT dockrellhazelm immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT ottenhofftomhm immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT scribathomasj immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT pickerlouisj immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT walzlgerhard immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT kaufmannstefanhe immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT zakdaniele immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome AT immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome |