Cargando…

Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome

There remains a pressing need for biomarkers that can predict who will progress to active tuberculosis (TB) after exposure to Mycobacterium tuberculosis (MTB) bacterium. By analyzing cohorts of household contacts of TB index cases (HHCs) and a stringent non-human primate (NHP) challenge model, we ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Duffy, Fergal J., Weiner, January, Hansen, Scott, Tabb, David L., Suliman, Sara, Thompson, Ethan, Maertzdorf, Jeroen, Shankar, Smitha, Tromp, Gerard, Parida, Shreemanta, Dover, Drew, Axthelm, Michael K., Sutherland, Jayne S., Dockrell, Hazel M., Ottenhoff, Tom H. M., Scriba, Thomas J., Picker, Louis J., Walzl, Gerhard, Kaufmann, Stefan H. E., Zak, Daniel E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440524/
https://www.ncbi.nlm.nih.gov/pubmed/30967866
http://dx.doi.org/10.3389/fimmu.2019.00527
_version_ 1783407404117917696
author Duffy, Fergal J.
Weiner, January
Hansen, Scott
Tabb, David L.
Suliman, Sara
Thompson, Ethan
Maertzdorf, Jeroen
Shankar, Smitha
Tromp, Gerard
Parida, Shreemanta
Dover, Drew
Axthelm, Michael K.
Sutherland, Jayne S.
Dockrell, Hazel M.
Ottenhoff, Tom H. M.
Scriba, Thomas J.
Picker, Louis J.
Walzl, Gerhard
Kaufmann, Stefan H. E.
Zak, Daniel E.
author_facet Duffy, Fergal J.
Weiner, January
Hansen, Scott
Tabb, David L.
Suliman, Sara
Thompson, Ethan
Maertzdorf, Jeroen
Shankar, Smitha
Tromp, Gerard
Parida, Shreemanta
Dover, Drew
Axthelm, Michael K.
Sutherland, Jayne S.
Dockrell, Hazel M.
Ottenhoff, Tom H. M.
Scriba, Thomas J.
Picker, Louis J.
Walzl, Gerhard
Kaufmann, Stefan H. E.
Zak, Daniel E.
author_sort Duffy, Fergal J.
collection PubMed
description There remains a pressing need for biomarkers that can predict who will progress to active tuberculosis (TB) after exposure to Mycobacterium tuberculosis (MTB) bacterium. By analyzing cohorts of household contacts of TB index cases (HHCs) and a stringent non-human primate (NHP) challenge model, we evaluated whether integration of blood transcriptional profiling with serum metabolomic profiling can provide new understanding of disease processes and enable improved prediction of TB progression. Compared to either alone, the combined application of pre-existing transcriptome- and metabolome-based signatures more accurately predicted TB progression in the HHC cohorts and more accurately predicted disease severity in the NHPs. Pathway and data-driven correlation analyses of the integrated transcriptional and metabolomic datasets further identified novel immunometabolomic signatures significantly associated with TB progression in HHCs and NHPs, implicating cortisol, tryptophan, glutathione, and tRNA acylation networks. These results demonstrate the power of multi-omics analysis to provide new insights into complex disease processes.
format Online
Article
Text
id pubmed-6440524
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-64405242019-04-09 Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome Duffy, Fergal J. Weiner, January Hansen, Scott Tabb, David L. Suliman, Sara Thompson, Ethan Maertzdorf, Jeroen Shankar, Smitha Tromp, Gerard Parida, Shreemanta Dover, Drew Axthelm, Michael K. Sutherland, Jayne S. Dockrell, Hazel M. Ottenhoff, Tom H. M. Scriba, Thomas J. Picker, Louis J. Walzl, Gerhard Kaufmann, Stefan H. E. Zak, Daniel E. Front Immunol Immunology There remains a pressing need for biomarkers that can predict who will progress to active tuberculosis (TB) after exposure to Mycobacterium tuberculosis (MTB) bacterium. By analyzing cohorts of household contacts of TB index cases (HHCs) and a stringent non-human primate (NHP) challenge model, we evaluated whether integration of blood transcriptional profiling with serum metabolomic profiling can provide new understanding of disease processes and enable improved prediction of TB progression. Compared to either alone, the combined application of pre-existing transcriptome- and metabolome-based signatures more accurately predicted TB progression in the HHC cohorts and more accurately predicted disease severity in the NHPs. Pathway and data-driven correlation analyses of the integrated transcriptional and metabolomic datasets further identified novel immunometabolomic signatures significantly associated with TB progression in HHCs and NHPs, implicating cortisol, tryptophan, glutathione, and tRNA acylation networks. These results demonstrate the power of multi-omics analysis to provide new insights into complex disease processes. Frontiers Media S.A. 2019-03-22 /pmc/articles/PMC6440524/ /pubmed/30967866 http://dx.doi.org/10.3389/fimmu.2019.00527 Text en Copyright © 2019 Duffy, Weiner, Hansen, Tabb, Suliman, Thompson, Maertzdorf, Shankar, Tromp, Parida, Dover, Axthelm, Sutherland, Dockrell, Ottenhoff, Scriba, Picker, Walzl, Kaufmann, Zak and The GC6-74 Consortium. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Duffy, Fergal J.
Weiner, January
Hansen, Scott
Tabb, David L.
Suliman, Sara
Thompson, Ethan
Maertzdorf, Jeroen
Shankar, Smitha
Tromp, Gerard
Parida, Shreemanta
Dover, Drew
Axthelm, Michael K.
Sutherland, Jayne S.
Dockrell, Hazel M.
Ottenhoff, Tom H. M.
Scriba, Thomas J.
Picker, Louis J.
Walzl, Gerhard
Kaufmann, Stefan H. E.
Zak, Daniel E.
Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome
title Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome
title_full Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome
title_fullStr Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome
title_full_unstemmed Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome
title_short Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome
title_sort immunometabolic signatures predict risk of progression to active tuberculosis and disease outcome
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440524/
https://www.ncbi.nlm.nih.gov/pubmed/30967866
http://dx.doi.org/10.3389/fimmu.2019.00527
work_keys_str_mv AT duffyfergalj immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT weinerjanuary immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT hansenscott immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT tabbdavidl immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT sulimansara immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT thompsonethan immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT maertzdorfjeroen immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT shankarsmitha immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT trompgerard immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT paridashreemanta immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT doverdrew immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT axthelmmichaelk immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT sutherlandjaynes immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT dockrellhazelm immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT ottenhofftomhm immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT scribathomasj immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT pickerlouisj immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT walzlgerhard immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT kaufmannstefanhe immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT zakdaniele immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome
AT immunometabolicsignaturespredictriskofprogressiontoactivetuberculosisanddiseaseoutcome