Cargando…

Tranilast Treatment Attenuates Cerebral Ischemia‐Reperfusion Injury in Rats Through the Inhibition of Inflammatory Responses Mediated by NF‐κB and PPARs

Ischemia‐reperfusion injury (IRI) occurs when blood supply returns to tissue after interruption, which is associated with life‐threatening inflammatory response. Tranilast is a widely used antiallergic agent in the treatment against bronchial asthma and keloid. To study the function of tranilast, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhuo, Yue, Zhuo, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440572/
https://www.ncbi.nlm.nih.gov/pubmed/30548101
http://dx.doi.org/10.1111/cts.12606
_version_ 1783407411752599552
author Zhuo, Yue
Zhuo, Jun
author_facet Zhuo, Yue
Zhuo, Jun
author_sort Zhuo, Yue
collection PubMed
description Ischemia‐reperfusion injury (IRI) occurs when blood supply returns to tissue after interruption, which is associated with life‐threatening inflammatory response. Tranilast is a widely used antiallergic agent in the treatment against bronchial asthma and keloid. To study the function of tranilast, we used IRI in rat models. The brain tissues of IRI rats with or without tranilast treatment were collected. Neuronal apoptosis in the brain was detected by terminal deoxynucleotidyl transferase nick end labeling assay, and proinflammatory cytokine levels were measured by quantitative real‐time polymerase chain reaction and enzyme‐linked immunosorbent assay. The expression levels of nuclear factor‐kappa B (NF‐κB), inhibitor of κB (IκB) and peroxisome proliferator‐activated receptors (PPARs) were detected by Western blot. The results showed that tranilast treatment reduced neuronal apoptosis in the brain of IRI rats. Tranilast enhanced the short‐term memory and long‐term memory to novel object recognition paradigm. Tranilast treatment decreased the messenger RNA (mRNA) and protein levels of multiple proinflammatory cytokines, and affected NF‐κB and inhibitor of kappa B protein expressions. Tranilast promoted the expressions of PPAR‐α and PPAR‐γ. Our findings demonstrate that tranilast treatment could attenuate cerebral IRI by regulating the inflammatory cytokine production and PPAR expression. Tranilast is a potential drug for IRI treatment in the clinic.
format Online
Article
Text
id pubmed-6440572
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-64405722019-04-11 Tranilast Treatment Attenuates Cerebral Ischemia‐Reperfusion Injury in Rats Through the Inhibition of Inflammatory Responses Mediated by NF‐κB and PPARs Zhuo, Yue Zhuo, Jun Clin Transl Sci Research Ischemia‐reperfusion injury (IRI) occurs when blood supply returns to tissue after interruption, which is associated with life‐threatening inflammatory response. Tranilast is a widely used antiallergic agent in the treatment against bronchial asthma and keloid. To study the function of tranilast, we used IRI in rat models. The brain tissues of IRI rats with or without tranilast treatment were collected. Neuronal apoptosis in the brain was detected by terminal deoxynucleotidyl transferase nick end labeling assay, and proinflammatory cytokine levels were measured by quantitative real‐time polymerase chain reaction and enzyme‐linked immunosorbent assay. The expression levels of nuclear factor‐kappa B (NF‐κB), inhibitor of κB (IκB) and peroxisome proliferator‐activated receptors (PPARs) were detected by Western blot. The results showed that tranilast treatment reduced neuronal apoptosis in the brain of IRI rats. Tranilast enhanced the short‐term memory and long‐term memory to novel object recognition paradigm. Tranilast treatment decreased the messenger RNA (mRNA) and protein levels of multiple proinflammatory cytokines, and affected NF‐κB and inhibitor of kappa B protein expressions. Tranilast promoted the expressions of PPAR‐α and PPAR‐γ. Our findings demonstrate that tranilast treatment could attenuate cerebral IRI by regulating the inflammatory cytokine production and PPAR expression. Tranilast is a potential drug for IRI treatment in the clinic. John Wiley and Sons Inc. 2018-12-31 2019-03 /pmc/articles/PMC6440572/ /pubmed/30548101 http://dx.doi.org/10.1111/cts.12606 Text en © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research
Zhuo, Yue
Zhuo, Jun
Tranilast Treatment Attenuates Cerebral Ischemia‐Reperfusion Injury in Rats Through the Inhibition of Inflammatory Responses Mediated by NF‐κB and PPARs
title Tranilast Treatment Attenuates Cerebral Ischemia‐Reperfusion Injury in Rats Through the Inhibition of Inflammatory Responses Mediated by NF‐κB and PPARs
title_full Tranilast Treatment Attenuates Cerebral Ischemia‐Reperfusion Injury in Rats Through the Inhibition of Inflammatory Responses Mediated by NF‐κB and PPARs
title_fullStr Tranilast Treatment Attenuates Cerebral Ischemia‐Reperfusion Injury in Rats Through the Inhibition of Inflammatory Responses Mediated by NF‐κB and PPARs
title_full_unstemmed Tranilast Treatment Attenuates Cerebral Ischemia‐Reperfusion Injury in Rats Through the Inhibition of Inflammatory Responses Mediated by NF‐κB and PPARs
title_short Tranilast Treatment Attenuates Cerebral Ischemia‐Reperfusion Injury in Rats Through the Inhibition of Inflammatory Responses Mediated by NF‐κB and PPARs
title_sort tranilast treatment attenuates cerebral ischemia‐reperfusion injury in rats through the inhibition of inflammatory responses mediated by nf‐κb and ppars
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440572/
https://www.ncbi.nlm.nih.gov/pubmed/30548101
http://dx.doi.org/10.1111/cts.12606
work_keys_str_mv AT zhuoyue tranilasttreatmentattenuatescerebralischemiareperfusioninjuryinratsthroughtheinhibitionofinflammatoryresponsesmediatedbynfkbandppars
AT zhuojun tranilasttreatmentattenuatescerebralischemiareperfusioninjuryinratsthroughtheinhibitionofinflammatoryresponsesmediatedbynfkbandppars