Cargando…

A combined experimental-computational approach for spatial protection efficacy assessment of controlled release devices against mosquitoes (Anopheles)

This work describes the use of entomological studies combined with in silico models (computer simulations derived from numerical models) to assess the efficacy of a novel device for controlled release of spatial repellents. Controlled Release Devices (CRDs) were tested with different concentrations...

Descripción completa

Detalles Bibliográficos
Autores principales: Bernier, Ulrich R., Kline, Daniel L., Vazquez-Abad, Agustin, Perry, Melynda, Cohnstaedt, Lee W., Gurman, Pablo, D’hers, Sebastián, Elman, Noel M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440642/
https://www.ncbi.nlm.nih.gov/pubmed/30856177
http://dx.doi.org/10.1371/journal.pntd.0007188
_version_ 1783407427500113920
author Bernier, Ulrich R.
Kline, Daniel L.
Vazquez-Abad, Agustin
Perry, Melynda
Cohnstaedt, Lee W.
Gurman, Pablo
D’hers, Sebastián
Elman, Noel M.
author_facet Bernier, Ulrich R.
Kline, Daniel L.
Vazquez-Abad, Agustin
Perry, Melynda
Cohnstaedt, Lee W.
Gurman, Pablo
D’hers, Sebastián
Elman, Noel M.
author_sort Bernier, Ulrich R.
collection PubMed
description This work describes the use of entomological studies combined with in silico models (computer simulations derived from numerical models) to assess the efficacy of a novel device for controlled release of spatial repellents. Controlled Release Devices (CRDs) were tested with different concentrations of metofluthrin and tested against An. quadrimaculatus mosquitoes using arm-in cage, semi-field, and outdoor studies. Arm-in-cage trials showed an approximate mean values for mosquito knockdown of 40% and mosquito bite reduction of 80% for the optimal metofluthrin formulation for a 15-minute trial. Semi-field outdoor studies showed a mean mortality of a 50% for 24 hour trial and 75% for a 48 hour trial for optimal concentrations. Outdoors studies showed an approximate mean mortality rate of 50% for a 24 hour trial for optimal concentrations. Numerical simulations based on Computational Fluid Dynamics (CFD) were performed in order to obtain spatial concentration profiles for 24 hour and 48 hour periods. Experimental results were correlated with simulation results in order to obtain a functional model that linked mosquito mortality with the estimated spatial concentration for a given period of time. Such correlation provides a powerful insight in predicting the effectiveness of the CRDs as a vector-control tool. While CRDs represent an alternative to current spatial repellent delivery methods, such as coils, candles, electric repellents, and passive emanators based on impregnated strips, the presented method can be applied to any spatial vector control treatment by correlating entomological endpoints, i.e. mortality, with in-silico simulations to predict overall efficacy. The presented work therefore presents a new methodology for improving design, development and deployment of vector-control tools to reduce transmission of vector-borne diseases, including malaria and dengue.
format Online
Article
Text
id pubmed-6440642
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-64406422019-04-12 A combined experimental-computational approach for spatial protection efficacy assessment of controlled release devices against mosquitoes (Anopheles) Bernier, Ulrich R. Kline, Daniel L. Vazquez-Abad, Agustin Perry, Melynda Cohnstaedt, Lee W. Gurman, Pablo D’hers, Sebastián Elman, Noel M. PLoS Negl Trop Dis Research Article This work describes the use of entomological studies combined with in silico models (computer simulations derived from numerical models) to assess the efficacy of a novel device for controlled release of spatial repellents. Controlled Release Devices (CRDs) were tested with different concentrations of metofluthrin and tested against An. quadrimaculatus mosquitoes using arm-in cage, semi-field, and outdoor studies. Arm-in-cage trials showed an approximate mean values for mosquito knockdown of 40% and mosquito bite reduction of 80% for the optimal metofluthrin formulation for a 15-minute trial. Semi-field outdoor studies showed a mean mortality of a 50% for 24 hour trial and 75% for a 48 hour trial for optimal concentrations. Outdoors studies showed an approximate mean mortality rate of 50% for a 24 hour trial for optimal concentrations. Numerical simulations based on Computational Fluid Dynamics (CFD) were performed in order to obtain spatial concentration profiles for 24 hour and 48 hour periods. Experimental results were correlated with simulation results in order to obtain a functional model that linked mosquito mortality with the estimated spatial concentration for a given period of time. Such correlation provides a powerful insight in predicting the effectiveness of the CRDs as a vector-control tool. While CRDs represent an alternative to current spatial repellent delivery methods, such as coils, candles, electric repellents, and passive emanators based on impregnated strips, the presented method can be applied to any spatial vector control treatment by correlating entomological endpoints, i.e. mortality, with in-silico simulations to predict overall efficacy. The presented work therefore presents a new methodology for improving design, development and deployment of vector-control tools to reduce transmission of vector-borne diseases, including malaria and dengue. Public Library of Science 2019-03-11 /pmc/articles/PMC6440642/ /pubmed/30856177 http://dx.doi.org/10.1371/journal.pntd.0007188 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Bernier, Ulrich R.
Kline, Daniel L.
Vazquez-Abad, Agustin
Perry, Melynda
Cohnstaedt, Lee W.
Gurman, Pablo
D’hers, Sebastián
Elman, Noel M.
A combined experimental-computational approach for spatial protection efficacy assessment of controlled release devices against mosquitoes (Anopheles)
title A combined experimental-computational approach for spatial protection efficacy assessment of controlled release devices against mosquitoes (Anopheles)
title_full A combined experimental-computational approach for spatial protection efficacy assessment of controlled release devices against mosquitoes (Anopheles)
title_fullStr A combined experimental-computational approach for spatial protection efficacy assessment of controlled release devices against mosquitoes (Anopheles)
title_full_unstemmed A combined experimental-computational approach for spatial protection efficacy assessment of controlled release devices against mosquitoes (Anopheles)
title_short A combined experimental-computational approach for spatial protection efficacy assessment of controlled release devices against mosquitoes (Anopheles)
title_sort combined experimental-computational approach for spatial protection efficacy assessment of controlled release devices against mosquitoes (anopheles)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440642/
https://www.ncbi.nlm.nih.gov/pubmed/30856177
http://dx.doi.org/10.1371/journal.pntd.0007188
work_keys_str_mv AT bernierulrichr acombinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT klinedaniell acombinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT vazquezabadagustin acombinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT perrymelynda acombinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT cohnstaedtleew acombinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT gurmanpablo acombinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT dherssebastian acombinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT elmannoelm acombinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT bernierulrichr combinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT klinedaniell combinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT vazquezabadagustin combinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT perrymelynda combinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT cohnstaedtleew combinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT gurmanpablo combinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT dherssebastian combinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles
AT elmannoelm combinedexperimentalcomputationalapproachforspatialprotectionefficacyassessmentofcontrolledreleasedevicesagainstmosquitoesanopheles