Cargando…
Metabolic Syndrome Prediction Using Machine Learning Models with Genetic and Clinical Information from a Nonobese Healthy Population
The prevalence of metabolic syndrome (MS) in the nonobese population is not low. However, the identification and risk mitigation of MS are not easy in this population. We aimed to develop an MS prediction model using genetic and clinical factors of nonobese Koreans through machine learning methods....
Autores principales: | Choe, Eun Kyung, Rhee, Hwanseok, Lee, Seungjae, Shin, Eunsoon, Oh, Seung-Won, Lee, Jong-Eun, Choi, Seung Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440667/ https://www.ncbi.nlm.nih.gov/pubmed/30602092 http://dx.doi.org/10.5808/GI.2018.16.4.e31 |
Ejemplares similares
-
Genome-wide association study of metabolic syndrome in Korean populations
por: Oh, Seung-Won, et al.
Publicado: (2020) -
Genetic Determinants of Visit-to-Visit Lipid Variability: Genome-Wide Association Study in Statin-Naïve Korean Population
por: Park, Jun-Bean, et al.
Publicado: (2022) -
Corrigendum: Genetic Determinants of Visit-to-Visit Lipid Variability: Genome-Wide Association Study in Statin-Naïve Korean Population
por: Park, Jun-Bean, et al.
Publicado: (2022) -
Genome-wide association study of coronary artery calcification in asymptomatic Korean populations
por: Choi, Su-Yeon, et al.
Publicado: (2019) -
Genetic Polymorphisms Associated with the Neutrophil–Lymphocyte Ratio and Their Clinical Implications for Metabolic Risk Factors
por: Park, Boram, et al.
Publicado: (2018)