Cargando…
Ovarian Cancer Prognostic Prediction Model Using RNA Sequencing Data
Ovarian cancer is one of the leading causes of cancer-related deaths in gynecological malignancies. Over 70% of ovarian cancer cases are high-grade serous ovarian cancers and have high death rates due to their resistance to chemotherapy. Despite advances in surgical and pharmaceutical therapies, ove...
Autores principales: | Jeong, Seokho, Mok, Lydia, Kim, Se Ik, Ahn, TaeJin, Song, Yong-Sang, Park, Taesung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440672/ https://www.ncbi.nlm.nih.gov/pubmed/30602093 http://dx.doi.org/10.5808/GI.2018.16.4.e32 |
Ejemplares similares
-
Personalized identification of altered pathways in cancer using accumulated normal tissue data
por: Ahn, TaeJin, et al.
Publicado: (2014) -
Pathway-Driven Discovery of Rare Mutational Impact on Cancer
por: Ahn, TaeJin, et al.
Publicado: (2014) -
Development of Machine Learning Models to Predict Platinum Sensitivity of High-Grade Serous Ovarian Carcinoma
por: Hwangbo, Suhyun, et al.
Publicado: (2021) -
HisCoM-PAGE: software for hierarchical structural component models for pathway analysis of gene expression data
por: Mok, Lydia, et al.
Publicado: (2019) -
Development of Web-Based Nomograms to Predict Treatment Response and Prognosis of Epithelial Ovarian Cancer
por: Kim, Se Ik, et al.
Publicado: (2019)