Cargando…

Optical pulling at macroscopic distances

Optical tractor beams, proposed in 2011 and experimentally demonstrated soon after, offer the ability to pull particles against light propagation. It has attracted much research and public interest. Yet, its limited microscopic-scale range severely restricts its applicability. The dilemma is that a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiao, Chen, Jun, Lin, Zhifang, Ng, Jack
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440754/
https://www.ncbi.nlm.nih.gov/pubmed/30944852
http://dx.doi.org/10.1126/sciadv.aau7814
Descripción
Sumario:Optical tractor beams, proposed in 2011 and experimentally demonstrated soon after, offer the ability to pull particles against light propagation. It has attracted much research and public interest. Yet, its limited microscopic-scale range severely restricts its applicability. The dilemma is that a long-range Bessel beam, the most accessible beam for optical traction, has a small half-cone angle, θ(0), making pulling difficult. Here, by simultaneously using several novel and compatible mechanisms, including transverse isotropy, Snell’s law, antireflection coatings (or impedance-matched metamaterials), and light interference, we overcome this dilemma and achieve long-range optical pulling at θ(0) ≈ 1°. The range is estimated to be 14 cm when using ~1 W of laser power. Thus, macroscopic optical pulling can be realized in a medium or in a vacuum, with good tolerance of the half-cone angle and the frequency of the light.