Cargando…
_version_ 1783407455643893760
author Weber, Julia
de la Rosa, Jorge
Grove, Carolyn S.
Schick, Markus
Rad, Lena
Baranov, Olga
Strong, Alexander
Pfaus, Anja
Friedrich, Mathias J.
Engleitner, Thomas
Lersch, Robert
Öllinger, Rupert
Grau, Michael
Menendez, Irene Gonzalez
Martella, Manuela
Kohlhofer, Ursula
Banerjee, Ruby
Turchaninova, Maria A.
Scherger, Anna
Hoffman, Gary J.
Hess, Julia
Kuhn, Laura B.
Ammon, Tim
Kim, Johnny
Schneider, Günter
Unger, Kristian
Zimber-Strobl, Ursula
Heikenwälder, Mathias
Schmidt-Supprian, Marc
Yang, Fengtang
Saur, Dieter
Liu, Pentao
Steiger, Katja
Chudakov, Dmitriy M.
Lenz, Georg
Quintanilla-Martinez, Leticia
Keller, Ulrich
Vassiliou, George S.
Cadiñanos, Juan
Bradley, Allan
Rad, Roland
author_facet Weber, Julia
de la Rosa, Jorge
Grove, Carolyn S.
Schick, Markus
Rad, Lena
Baranov, Olga
Strong, Alexander
Pfaus, Anja
Friedrich, Mathias J.
Engleitner, Thomas
Lersch, Robert
Öllinger, Rupert
Grau, Michael
Menendez, Irene Gonzalez
Martella, Manuela
Kohlhofer, Ursula
Banerjee, Ruby
Turchaninova, Maria A.
Scherger, Anna
Hoffman, Gary J.
Hess, Julia
Kuhn, Laura B.
Ammon, Tim
Kim, Johnny
Schneider, Günter
Unger, Kristian
Zimber-Strobl, Ursula
Heikenwälder, Mathias
Schmidt-Supprian, Marc
Yang, Fengtang
Saur, Dieter
Liu, Pentao
Steiger, Katja
Chudakov, Dmitriy M.
Lenz, Georg
Quintanilla-Martinez, Leticia
Keller, Ulrich
Vassiliou, George S.
Cadiñanos, Juan
Bradley, Allan
Rad, Roland
author_sort Weber, Julia
collection PubMed
description B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.
format Online
Article
Text
id pubmed-6440946
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64409462019-04-01 PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice Weber, Julia de la Rosa, Jorge Grove, Carolyn S. Schick, Markus Rad, Lena Baranov, Olga Strong, Alexander Pfaus, Anja Friedrich, Mathias J. Engleitner, Thomas Lersch, Robert Öllinger, Rupert Grau, Michael Menendez, Irene Gonzalez Martella, Manuela Kohlhofer, Ursula Banerjee, Ruby Turchaninova, Maria A. Scherger, Anna Hoffman, Gary J. Hess, Julia Kuhn, Laura B. Ammon, Tim Kim, Johnny Schneider, Günter Unger, Kristian Zimber-Strobl, Ursula Heikenwälder, Mathias Schmidt-Supprian, Marc Yang, Fengtang Saur, Dieter Liu, Pentao Steiger, Katja Chudakov, Dmitriy M. Lenz, Georg Quintanilla-Martinez, Leticia Keller, Ulrich Vassiliou, George S. Cadiñanos, Juan Bradley, Allan Rad, Roland Nat Commun Article B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology. Nature Publishing Group UK 2019-03-29 /pmc/articles/PMC6440946/ /pubmed/30926791 http://dx.doi.org/10.1038/s41467-019-09180-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Weber, Julia
de la Rosa, Jorge
Grove, Carolyn S.
Schick, Markus
Rad, Lena
Baranov, Olga
Strong, Alexander
Pfaus, Anja
Friedrich, Mathias J.
Engleitner, Thomas
Lersch, Robert
Öllinger, Rupert
Grau, Michael
Menendez, Irene Gonzalez
Martella, Manuela
Kohlhofer, Ursula
Banerjee, Ruby
Turchaninova, Maria A.
Scherger, Anna
Hoffman, Gary J.
Hess, Julia
Kuhn, Laura B.
Ammon, Tim
Kim, Johnny
Schneider, Günter
Unger, Kristian
Zimber-Strobl, Ursula
Heikenwälder, Mathias
Schmidt-Supprian, Marc
Yang, Fengtang
Saur, Dieter
Liu, Pentao
Steiger, Katja
Chudakov, Dmitriy M.
Lenz, Georg
Quintanilla-Martinez, Leticia
Keller, Ulrich
Vassiliou, George S.
Cadiñanos, Juan
Bradley, Allan
Rad, Roland
PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice
title PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice
title_full PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice
title_fullStr PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice
title_full_unstemmed PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice
title_short PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice
title_sort piggybac transposon tools for recessive screening identify b-cell lymphoma drivers in mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440946/
https://www.ncbi.nlm.nih.gov/pubmed/30926791
http://dx.doi.org/10.1038/s41467-019-09180-3
work_keys_str_mv AT weberjulia piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT delarosajorge piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT grovecarolyns piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT schickmarkus piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT radlena piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT baranovolga piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT strongalexander piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT pfausanja piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT friedrichmathiasj piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT engleitnerthomas piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT lerschrobert piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT ollingerrupert piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT graumichael piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT menendezirenegonzalez piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT martellamanuela piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT kohlhoferursula piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT banerjeeruby piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT turchaninovamariaa piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT schergeranna piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT hoffmangaryj piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT hessjulia piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT kuhnlaurab piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT ammontim piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT kimjohnny piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT schneidergunter piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT ungerkristian piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT zimberstroblursula piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT heikenwaldermathias piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT schmidtsupprianmarc piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT yangfengtang piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT saurdieter piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT liupentao piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT steigerkatja piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT chudakovdmitriym piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT lenzgeorg piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT quintanillamartinezleticia piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT kellerulrich piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT vassiliougeorges piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT cadinanosjuan piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT bradleyallan piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice
AT radroland piggybactransposontoolsforrecessivescreeningidentifybcelllymphomadriversinmice