Cargando…

Coordination of capsule assembly and cell wall biosynthesis in Staphylococcus aureus

The Gram-positive cell wall consists of peptidoglycan functionalized with anionic glycopolymers, such as wall teichoic acid and capsular polysaccharide (CP). How the different cell wall polymers are assembled in a coordinated fashion is not fully understood. Here, we reconstitute Staphylococcus aure...

Descripción completa

Detalles Bibliográficos
Autores principales: Rausch, Marvin, Deisinger, Julia P., Ulm, Hannah, Müller, Anna, Li, Wenjin, Hardt, Patrick, Wang, Xiaogang, Li, Xue, Sylvester, Marc, Engeser, Marianne, Vollmer, Waldemar, Müller, Christa E., Sahl, Hans Georg, Lee, Jean Claire, Schneider, Tanja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441080/
https://www.ncbi.nlm.nih.gov/pubmed/30926919
http://dx.doi.org/10.1038/s41467-019-09356-x
Descripción
Sumario:The Gram-positive cell wall consists of peptidoglycan functionalized with anionic glycopolymers, such as wall teichoic acid and capsular polysaccharide (CP). How the different cell wall polymers are assembled in a coordinated fashion is not fully understood. Here, we reconstitute Staphylococcus aureus CP biosynthesis and elucidate its interplay with the cell wall biosynthetic machinery. We show that the CapAB tyrosine kinase complex controls multiple enzymatic checkpoints through reversible phosphorylation to modulate the consumption of essential precursors that are also used in peptidoglycan biosynthesis. In addition, the CapA1 activator protein interacts with and cleaves lipid-linked CP precursors, releasing the essential lipid carrier undecaprenyl-phosphate. We further provide biochemical evidence that the subsequent attachment of CP is achieved by LcpC, a member of the LytR-CpsA-Psr protein family, using the peptidoglycan precursor native lipid II as acceptor substrate. The Ser/Thr kinase PknB, which can sense cellular lipid II levels, negatively controls CP synthesis. Our work sheds light on the integration of CP biosynthesis into the multi-component Gram-positive cell wall.