Cargando…
Enhanced Dopamine in Prodromal Schizophrenia (EDiPS): a new animal model of relevance to schizophrenia
One of the most robust neurochemical abnormalities reported in patients living with schizophrenia is an increase in dopamine (DA) synthesis and release in the dorsal striatum (DS). Importantly, it appears that this increase progresses as a patient transitions from a prodromal stage to the clinical d...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441087/ https://www.ncbi.nlm.nih.gov/pubmed/30926827 http://dx.doi.org/10.1038/s41537-019-0074-z |
_version_ | 1783407486864195584 |
---|---|
author | Petty, Alice Cui, Xiaoying Tesiram, Yasvir Kirik, Deniz Howes, Oliver Eyles, Darryl |
author_facet | Petty, Alice Cui, Xiaoying Tesiram, Yasvir Kirik, Deniz Howes, Oliver Eyles, Darryl |
author_sort | Petty, Alice |
collection | PubMed |
description | One of the most robust neurochemical abnormalities reported in patients living with schizophrenia is an increase in dopamine (DA) synthesis and release in the dorsal striatum (DS). Importantly, it appears that this increase progresses as a patient transitions from a prodromal stage to the clinical diagnosis of schizophrenia. Here we have recreated this pathophysiology in an animal model by increasing the capacity for DA synthesis preferentially within the DS. To achieve this we administer a genetic construct containing the rate-limiting enzymes in DA synthesis—tyrosine hydroxylase (TH), and GTP cyclohydrolase 1 (GCH1) (packaged within an adeno-associated virus)—into the substantia nigra pars compacta (SNpc) of adolescent animals. We refer to this model as “Enhanced Dopamine in Prodromal Schizophrenia” (EDiPS). We first confirmed that the TH enzyme is preferentially increased in the DS. As adults, EDiPS animals release significantly more DA in the DS following a low dose of amphetamine (AMPH), have increased AMPH-induced hyperlocomotion and show deficits in pre-pulse inhibition (PPI). The glutamatergic response to AMPH is also altered, again in the DS. EDiPS represents an ideal experimental platform to (a) understand how a preferential increase in DA synthesis capacity in the DS relates to “positive” symptoms in schizophrenia; (b) understand how manipulation of DS DA may influence other neurotransmitter systems shown to be altered in patients with schizophrenia; (c) allow researchers to follow an “at risk”-like disease course from adolescence to adulthood; and (d) ultimately allow trials of putative prophylactic agents to prevent disease onset in vulnerable populations. |
format | Online Article Text |
id | pubmed-6441087 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-64410872019-04-08 Enhanced Dopamine in Prodromal Schizophrenia (EDiPS): a new animal model of relevance to schizophrenia Petty, Alice Cui, Xiaoying Tesiram, Yasvir Kirik, Deniz Howes, Oliver Eyles, Darryl NPJ Schizophr Article One of the most robust neurochemical abnormalities reported in patients living with schizophrenia is an increase in dopamine (DA) synthesis and release in the dorsal striatum (DS). Importantly, it appears that this increase progresses as a patient transitions from a prodromal stage to the clinical diagnosis of schizophrenia. Here we have recreated this pathophysiology in an animal model by increasing the capacity for DA synthesis preferentially within the DS. To achieve this we administer a genetic construct containing the rate-limiting enzymes in DA synthesis—tyrosine hydroxylase (TH), and GTP cyclohydrolase 1 (GCH1) (packaged within an adeno-associated virus)—into the substantia nigra pars compacta (SNpc) of adolescent animals. We refer to this model as “Enhanced Dopamine in Prodromal Schizophrenia” (EDiPS). We first confirmed that the TH enzyme is preferentially increased in the DS. As adults, EDiPS animals release significantly more DA in the DS following a low dose of amphetamine (AMPH), have increased AMPH-induced hyperlocomotion and show deficits in pre-pulse inhibition (PPI). The glutamatergic response to AMPH is also altered, again in the DS. EDiPS represents an ideal experimental platform to (a) understand how a preferential increase in DA synthesis capacity in the DS relates to “positive” symptoms in schizophrenia; (b) understand how manipulation of DS DA may influence other neurotransmitter systems shown to be altered in patients with schizophrenia; (c) allow researchers to follow an “at risk”-like disease course from adolescence to adulthood; and (d) ultimately allow trials of putative prophylactic agents to prevent disease onset in vulnerable populations. Nature Publishing Group UK 2019-03-29 /pmc/articles/PMC6441087/ /pubmed/30926827 http://dx.doi.org/10.1038/s41537-019-0074-z Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Petty, Alice Cui, Xiaoying Tesiram, Yasvir Kirik, Deniz Howes, Oliver Eyles, Darryl Enhanced Dopamine in Prodromal Schizophrenia (EDiPS): a new animal model of relevance to schizophrenia |
title | Enhanced Dopamine in Prodromal Schizophrenia (EDiPS): a new animal model of relevance to schizophrenia |
title_full | Enhanced Dopamine in Prodromal Schizophrenia (EDiPS): a new animal model of relevance to schizophrenia |
title_fullStr | Enhanced Dopamine in Prodromal Schizophrenia (EDiPS): a new animal model of relevance to schizophrenia |
title_full_unstemmed | Enhanced Dopamine in Prodromal Schizophrenia (EDiPS): a new animal model of relevance to schizophrenia |
title_short | Enhanced Dopamine in Prodromal Schizophrenia (EDiPS): a new animal model of relevance to schizophrenia |
title_sort | enhanced dopamine in prodromal schizophrenia (edips): a new animal model of relevance to schizophrenia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441087/ https://www.ncbi.nlm.nih.gov/pubmed/30926827 http://dx.doi.org/10.1038/s41537-019-0074-z |
work_keys_str_mv | AT pettyalice enhanceddopamineinprodromalschizophreniaedipsanewanimalmodelofrelevancetoschizophrenia AT cuixiaoying enhanceddopamineinprodromalschizophreniaedipsanewanimalmodelofrelevancetoschizophrenia AT tesiramyasvir enhanceddopamineinprodromalschizophreniaedipsanewanimalmodelofrelevancetoschizophrenia AT kirikdeniz enhanceddopamineinprodromalschizophreniaedipsanewanimalmodelofrelevancetoschizophrenia AT howesoliver enhanceddopamineinprodromalschizophreniaedipsanewanimalmodelofrelevancetoschizophrenia AT eylesdarryl enhanceddopamineinprodromalschizophreniaedipsanewanimalmodelofrelevancetoschizophrenia |