Cargando…
Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes
Although silicon is a promising anode material for lithium-ion batteries, scalable synthesis of silicon anodes with good cyclability and low electrode swelling remains a significant challenge. Herein, we report a scalable top-down technique to produce ant-nest-like porous silicon from magnesium-sili...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441089/ https://www.ncbi.nlm.nih.gov/pubmed/30926799 http://dx.doi.org/10.1038/s41467-019-09510-5 |
Sumario: | Although silicon is a promising anode material for lithium-ion batteries, scalable synthesis of silicon anodes with good cyclability and low electrode swelling remains a significant challenge. Herein, we report a scalable top-down technique to produce ant-nest-like porous silicon from magnesium-silicon alloy. The ant-nest-like porous silicon comprising three-dimensional interconnected silicon nanoligaments and bicontinuous nanopores can prevent pulverization and accommodate volume expansion during cycling resulting in negligible particle-level outward expansion. The carbon-coated porous silicon anode delivers a high capacity of 1,271 mAh g(−1) at 2,100 mA g(−1) with 90% capacity retention after 1,000 cycles and has a low electrode swelling of 17.8% at a high areal capacity of 5.1 mAh cm(−2). The full cell with the prelithiated silicon anode and Li(Ni(1/3)Co(1/3)Mn(1/3))O(2) cathode boasts a high energy density of 502 Wh Kg(−1) and 84% capacity retention after 400 cycles. This work provides insights into the rational design of alloy anodes for high-energy batteries. |
---|