Cargando…

Suppression of Gut Bacterial Translocation Ameliorates Vascular Calcification through Inhibiting Toll-Like Receptor 9-Mediated BMP-2 Expression

AIMS: Vascular calcification (VC) is a primary risk factor for cardiovascular mortality in chronic renal failure (CRF) patients; thus, effective therapeutic targets are urgently needed to be explored. Here, we identified the role of intestinal bacterial translocation in CRF-related VC. METHODS AND R...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yang, Cai, Yan, Cui, Li-Yan, Tang, Wen, Liu, Bo, Zheng, Jia-Jia, Si, Wen-Zhe, Wang, Xian, Xu, Ming-Jiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441534/
https://www.ncbi.nlm.nih.gov/pubmed/31007833
http://dx.doi.org/10.1155/2019/3415682
Descripción
Sumario:AIMS: Vascular calcification (VC) is a primary risk factor for cardiovascular mortality in chronic renal failure (CRF) patients; thus, effective therapeutic targets are urgently needed to be explored. Here, we identified the role of intestinal bacterial translocation in CRF-related VC. METHODS AND RESULTS: Antibiotic supplementation by oral gavage significantly suppressed intestinal bacterial translocation, CRF-related VC, and aortic osteogenic gene and Toll-like receptor (TLR) gene expression in CRF rats. Furthermore, TLR4 and TLR9 activation in vascular smooth muscle cells (VSMCs) aggravated inorganic phosphate- (Pi-) induced calcification. TLR9 inhibition, but not TLR4 inhibition, by both a pharmacological inhibitor and genetic methods could significantly reduce CRF rats' serum or CRF-induced VC. Interestingly, bone morphogenic protein-2 (BMP-2) levels were increased in the aorta and sera from CRF rats. Increased BMP-2 levels were also observed in VSMCs treated with TLR9 agonist, which was blocked by NF-κB inhibition. Both siRNA knockdown of BMP-2 and NF-κB inhibitor significantly blocked TLR9 agonist-induced VSMC calcification. CONCLUSIONS: Gut bacterial translocation inhibited by oral antibiotic significantly reduces CRF-related VC through inhibition of TLR9/NF-κB/BMP-2 signaling.