Cargando…
Volatile organic compound profiles in outlet air from extracorporeal life-support devices differ from breath profiles in critically ill patients
INTRODUCTION: It is highly uncertain whether volatile organic compounds (VOCs) in exhaled breath of critically ill intensive care unit patients are formed in the lung locally, in the air compartment or lung tissue, or elsewhere in the body and transported to the lung via the bloodstream. We compared...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Respiratory Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441674/ https://www.ncbi.nlm.nih.gov/pubmed/30949490 http://dx.doi.org/10.1183/23120541.00134-2018 |
_version_ | 1783407581176266752 |
---|---|
author | Leopold, Jan Hendrik Philipp, Alois Bein, Thomas Redel, Andreas Gruber, Michael Schultz, Marcus J. Abu-Hanna, Ameen Brinkman, Paul Janssen, Hans-Gerd Bos, Lieuwe D.J. |
author_facet | Leopold, Jan Hendrik Philipp, Alois Bein, Thomas Redel, Andreas Gruber, Michael Schultz, Marcus J. Abu-Hanna, Ameen Brinkman, Paul Janssen, Hans-Gerd Bos, Lieuwe D.J. |
author_sort | Leopold, Jan Hendrik |
collection | PubMed |
description | INTRODUCTION: It is highly uncertain whether volatile organic compounds (VOCs) in exhaled breath of critically ill intensive care unit patients are formed in the lung locally, in the air compartment or lung tissue, or elsewhere in the body and transported to the lung via the bloodstream. We compared VOC mixtures in exhaled breath and in air coming from extracorporeal support devices in critically ill patients to address this issue. METHODS: First, we investigated whether it was safe to connect an electronic nose (eNose) or a gas sampling pump to extracorporeal support membranes. Then, breath and air from extracorporeal support devices were collected simultaneously for continuous monitoring of VOC mixtures using an eNose. In addition, samples for gas chromatography/mass spectrometry (GC-MS) analysis were taken daily at the two measurement sites. RESULTS: 10 critically ill patients were monitored for a median (interquartile range) duration of 73 (72–113) h; in total, we had 887 h of air sampling. The eNose signals of breath correlated moderately with signals of air from the extracorporeal support devices (R(2)=0.25–0.44). After GC-MS analysis, 96 VOCs were found both in breath and air from the extracorporeal support devices; of these, 29 (30%) showed a significant correlation (p<0.05) between the two measurement sites, of which 17 were identified. VOCs that did not correlate were found in a higher concentration in breath than in air from the extracorporeal support devices. CONCLUSION: This study suggests VOC analysis in the extracorporeal circulation is safe, and that VOCs of nonpulmonary origin can be measured in the breath and in the extracorporeal circulation of critically ill patients. For VOCs that did not correlate between the two measurement sites, the breath concentration was higher, suggesting pulmonary production of these molecules in a highly selected population of patients that received extracorporeal support. |
format | Online Article Text |
id | pubmed-6441674 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | European Respiratory Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-64416742019-04-04 Volatile organic compound profiles in outlet air from extracorporeal life-support devices differ from breath profiles in critically ill patients Leopold, Jan Hendrik Philipp, Alois Bein, Thomas Redel, Andreas Gruber, Michael Schultz, Marcus J. Abu-Hanna, Ameen Brinkman, Paul Janssen, Hans-Gerd Bos, Lieuwe D.J. ERJ Open Res Original Articles INTRODUCTION: It is highly uncertain whether volatile organic compounds (VOCs) in exhaled breath of critically ill intensive care unit patients are formed in the lung locally, in the air compartment or lung tissue, or elsewhere in the body and transported to the lung via the bloodstream. We compared VOC mixtures in exhaled breath and in air coming from extracorporeal support devices in critically ill patients to address this issue. METHODS: First, we investigated whether it was safe to connect an electronic nose (eNose) or a gas sampling pump to extracorporeal support membranes. Then, breath and air from extracorporeal support devices were collected simultaneously for continuous monitoring of VOC mixtures using an eNose. In addition, samples for gas chromatography/mass spectrometry (GC-MS) analysis were taken daily at the two measurement sites. RESULTS: 10 critically ill patients were monitored for a median (interquartile range) duration of 73 (72–113) h; in total, we had 887 h of air sampling. The eNose signals of breath correlated moderately with signals of air from the extracorporeal support devices (R(2)=0.25–0.44). After GC-MS analysis, 96 VOCs were found both in breath and air from the extracorporeal support devices; of these, 29 (30%) showed a significant correlation (p<0.05) between the two measurement sites, of which 17 were identified. VOCs that did not correlate were found in a higher concentration in breath than in air from the extracorporeal support devices. CONCLUSION: This study suggests VOC analysis in the extracorporeal circulation is safe, and that VOCs of nonpulmonary origin can be measured in the breath and in the extracorporeal circulation of critically ill patients. For VOCs that did not correlate between the two measurement sites, the breath concentration was higher, suggesting pulmonary production of these molecules in a highly selected population of patients that received extracorporeal support. European Respiratory Society 2019-04-01 /pmc/articles/PMC6441674/ /pubmed/30949490 http://dx.doi.org/10.1183/23120541.00134-2018 Text en Copyright ©ERS 2019 http://creativecommons.org/licenses/by-nc/4.0/This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. |
spellingShingle | Original Articles Leopold, Jan Hendrik Philipp, Alois Bein, Thomas Redel, Andreas Gruber, Michael Schultz, Marcus J. Abu-Hanna, Ameen Brinkman, Paul Janssen, Hans-Gerd Bos, Lieuwe D.J. Volatile organic compound profiles in outlet air from extracorporeal life-support devices differ from breath profiles in critically ill patients |
title | Volatile organic compound profiles in outlet air from extracorporeal life-support devices differ from breath profiles in critically ill patients |
title_full | Volatile organic compound profiles in outlet air from extracorporeal life-support devices differ from breath profiles in critically ill patients |
title_fullStr | Volatile organic compound profiles in outlet air from extracorporeal life-support devices differ from breath profiles in critically ill patients |
title_full_unstemmed | Volatile organic compound profiles in outlet air from extracorporeal life-support devices differ from breath profiles in critically ill patients |
title_short | Volatile organic compound profiles in outlet air from extracorporeal life-support devices differ from breath profiles in critically ill patients |
title_sort | volatile organic compound profiles in outlet air from extracorporeal life-support devices differ from breath profiles in critically ill patients |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441674/ https://www.ncbi.nlm.nih.gov/pubmed/30949490 http://dx.doi.org/10.1183/23120541.00134-2018 |
work_keys_str_mv | AT leopoldjanhendrik volatileorganiccompoundprofilesinoutletairfromextracorporeallifesupportdevicesdifferfrombreathprofilesincriticallyillpatients AT philippalois volatileorganiccompoundprofilesinoutletairfromextracorporeallifesupportdevicesdifferfrombreathprofilesincriticallyillpatients AT beinthomas volatileorganiccompoundprofilesinoutletairfromextracorporeallifesupportdevicesdifferfrombreathprofilesincriticallyillpatients AT redelandreas volatileorganiccompoundprofilesinoutletairfromextracorporeallifesupportdevicesdifferfrombreathprofilesincriticallyillpatients AT grubermichael volatileorganiccompoundprofilesinoutletairfromextracorporeallifesupportdevicesdifferfrombreathprofilesincriticallyillpatients AT schultzmarcusj volatileorganiccompoundprofilesinoutletairfromextracorporeallifesupportdevicesdifferfrombreathprofilesincriticallyillpatients AT abuhannaameen volatileorganiccompoundprofilesinoutletairfromextracorporeallifesupportdevicesdifferfrombreathprofilesincriticallyillpatients AT brinkmanpaul volatileorganiccompoundprofilesinoutletairfromextracorporeallifesupportdevicesdifferfrombreathprofilesincriticallyillpatients AT janssenhansgerd volatileorganiccompoundprofilesinoutletairfromextracorporeallifesupportdevicesdifferfrombreathprofilesincriticallyillpatients AT boslieuwedj volatileorganiccompoundprofilesinoutletairfromextracorporeallifesupportdevicesdifferfrombreathprofilesincriticallyillpatients |