Cargando…
Cardiac-DeepIED: Automatic Pixel-Level Deep Segmentation for Cardiac Bi-Ventricle Using Improved End-to-End Encoder-Decoder Network
Accurate segmentation of cardiac bi-ventricle (CBV) from magnetic resonance (MR) images has a great significance to analyze and evaluate the function of the cardiovascular system. However, the complex structure of CBV image makes fully automatic segmentation as a well-known challenge. In this paper,...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6442749/ https://www.ncbi.nlm.nih.gov/pubmed/30949419 http://dx.doi.org/10.1109/JTEHM.2019.2900628 |
Ejemplares similares
-
DeepIED: An epileptic discharge detector for EEG-fMRI based on deep learning
por: Hao, Yongfu, et al.
Publicado: (2017) -
Efficient attention-based deep encoder and decoder for automatic crack segmentation
por: Kang, Dong H, et al.
Publicado: (2021) -
Automatic Polyp Segmentation in Colonoscopy Images Using a Modified Deep Convolutional Encoder-Decoder Architecture
por: Eu, Chin Yii, et al.
Publicado: (2021) -
Direct pixel to pixel principal strain mapping from tagging MRI using end to end deep convolutional neural network (DeepStrain)
por: Abd-Elmoniem, Khaled Z., et al.
Publicado: (2021) -
Dual encoder–decoder-based deep polyp segmentation network for colonoscopy images
por: Lewis, John, et al.
Publicado: (2023)